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STUDY MATERIAL
SOLID MECHANICS UNIT- | SHORT QUESTION AND ANSWERS

What is stress tensor mean?

The tensor consists of nine components that completely define the state of stress at a point inside a
material in the deformed state, placement, or configuration. The tensor relates a unit-length direction
vector n to the stress vector T across an imaginary surface perpendicular to n: The unit vector is
dimensionless

What is stress tensor mean?

The tensor consists of nine components that completely define the state of stress at a point inside a material
in the deformed state, placement, or configuration. The tensor relates a unit-length direction vector n to the
stress vector T across an imaginary surface perpendicular to n: The unit vector is dimensionless.

What is stress and strain tensor?
Stress Tensor:- Stress is defined as force per unit area. If we take a cube of material and subject it
to an arbitrary load we can measure the stress on it in various directions These measurements will

form a second rank tensor; the stress tensor.

Define strain energy
Energy stored in an elastic body under loading. "ligaments and tendons are elastic structures that can
store strain energy, like a spring"

Definition of 'plane stress'

Plane stress exists when one of the three principal stresses is zero. In very flat or thin objects,
the stresses are negligible in the smallest dimension so plane stress can be said to apply. Plane
stress is a two-dimensional state of stress in which all stress is applied in a single plane.

What is normal stress?

A normal stress is a stress that occurs when a member is loaded by an axial force. The value of
the normal force for any prismatic section is simply the force divided by the cross sectional area.
A normal stress will occur when a member is placed in tension or compression.

What is major principal stress?

Principal Stresses. It is defined as the normal stress calculated at an angle when shear stress is
considered as zero. The maximum value of normal stress is known as major principal stress and
minimum value of normal stress is known as minor principal stress.

What is stress in material?

In continuum mechanics, stress is a physical quantity that expresses the internal forces that
neighboring particles of a continuous material exert on each other, while strain is the measure of the
deformation of the material which is not a physical quantity.
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What is Mohr's circle used for?

The Mohr circle is used to find the stress components and i.e., coordinates of any point on

the circle, acting on any other plane passing through making an angle with the plane. For this, two
approaches can be used: the double angle, and the Pole or origin of planes.

What is a bending stress?

Bending stress is the normal stress that is induced at a point in a body subjected to loads that
cause it to bend. When a load is applied perpendicular to the length of a beam (with two supports on
each end), bending moments are induced in the beam. The bottom fibers of the beam undergo a
normal tensile stress.

What are the 3 principal stresses?

These three principal stress can be found by solving the following cubic equation, This equation will
give three roots, which will be the three principal stresses for the given three normal stresses (0x,
oy and 0z) and the three shear stresses (Txy, Tyzand Tz).

What are different types of stresses?

There are six types of stress: compression, tension, shear, bending, torsion, and fatigue. Each of
these stresses affects an object in different ways and is caused by the internal forces acting on the
object.

Why is the strain tensor symmetric?

It is defined to be symmetric, so that it behaves like a tensor. ... The stress tensor, which is its
energy conjugate, is symmetric, and hence the skew-symmetric part has no contribution
towards strain energy

Is the stress tensor always symmetric?

The components of the Cauchy stress tensor at every point in a material satisfy the equilibrium
equations (Cauchy's equations of motion for zero acceleration). Moreover, the principle of
conservation of angular momentum implies that the stress tensor is symmetric."

What is stress tensor in engineering?

The Stress Tensor

Stress is defined as force per unit area. If we take a cube of material and subject it to an arbitrary
load we can measure the stress on it in various directions. These measurements will form a second
rank tensor; the stress tensor.

Define Cauchy's relation

Cauchy's equation is an empirical relationship between the refractive index and wavelength of light
for a particular transparent material. It is named for the mathematician Augustin-Louis Cauchy,

who defined it in 1836

Define Compatibility

Compatibility conditions are mathematical conditions that determine whether a particular deformation will
leave a body in a compatible state. In the context of infinitesimal strain theory, these conditions are
equivalent to stating that the displacements in a body can be obtained by integrating the strains.
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What is meant by strain compatibility?

In the two-dimensional case, there are three strain-displacement relations but only two displacement
components. This implies that the strains are not independent but are related in some way. The
relations between the strains are called compatibility conditions.

What do you mean by stress function?

The Airy stress function: Scalar potential function that can be used to find the stress. Satisfies
equilibrium in the absence of body forces. Only for two-dimensional problems (plane stress/plane
strain)

What is being compatible in a relationship?

Love, on the other hand, is a deeper emotion that you feel for another person. ... It also has an
emotional and sexual nature unlike compatibility, which doesn't always." Basically, being in

a compatible relationship means that you work well together, enjoy each other's company and have
a good time

What is compatibility equation?
Compatibility equations are those additional equations which can be made considering equilibrium
of the structure, to solve statically indeterminate structures

Dr.M.R.RAJAMANICKAM,
ASSOCIATE PROFESSOR,
MECHANICAL ENGINEERING,
ANNAMALAI UNIVERSITY
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SOLID MECHANICS UNIT-II
Constitutive equations: Generalized Hooke’s Law, Linear elasticity, Material
Symmetry

What is meant by constitutive matrix?

In physics and engineering, a constitutive equation or constitutive relation is a
relation between two physical quantities (especially kinetic quantities as related to
kinematic quantities) that is specific to a material or substance, and approximates the
response of that material to external stimuli.

What is a mechanical constitutive equation?

(Mechanical engineering: Mechanics and dynamics) A constitutive equation is
anequation that describes the relationship between two physical quantities, for example
between the stress put on a material and the strain produced on it. The constitutive
equation for most metals is based on Hooke's law.

What is constitutive modeling?

Constitutive modelling is the mathematical description of how materials respond to
various loadings. This is the most intensely researched field within solid mechanics
because of its complexity and the importance of accurate constitutive models for
practical engineering problems.

What is compliance tensor?

The stiffness and compliance tensors

For hyper elastic materials, the stress and strain of a linear elastic material are such
that one can be derived from a stored energy potential function of the other (also called
a strain energy density function)

Is Hooke's law a constitutive equation?

Definition of 'constitutive equation’

A constitutive equation is an equation that describes the relationship between two
physical quantities, for example between the stress put on a material and the strain
produced on it. The constitutive equation for most metals is based on Hooke's law.

What is compatibility equation?

Compatibility equations are those additional equations which can be made
considering equilibrium of the structure, to solve statically indeterminate structures.
Take the case of a cantilever propped at its free end. ... So, we need 1 extra
compatibility equation, in addition to the three equilibrium equations.
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What is monoclinic material?

Monoclinic materials:

As there is a single plane of material property symmetry, shear stresses from the
planes in which one of the axis is the perpendicular axis of the plane of material
symmetry (i.e.; 2-3 and 3-1 planes) will contribute only to the shear strains in those
planes.

What is transversely isotropic material?

A transversely isotropic material is one with physical properties that are symmetric
about an axis that is normal to a plane of isotropy. This transverse plane has infinite
planes of symmetry and thus, within this plane, the material properties are the same in
all directions.

What does Hyper elastic mean?

A hyper elastic or green elastic material is a type of constitutive model for ideally
elastic material for which the stress—strain relationship derives from a strain energy
density function.

What is tensor in SOM?

Tensors are referred to by their "rank” which is a description of the tensor's dimension.
A zero rank tensor is a scalar, a first rank tensor is a vector; a one-dimensional array
of numbers. A third rank tensor would look like a three-dimensional matrix; a cube of
numbers

What is the difference between orthotropic and anisotropic?

Orthotropic materials are a subset of anisotropic materials; their properties depend on
the direction in which they are measured. Orthotropic materials have three planes/axes
of symmetry. Anisotropic material, in contrast, has the same properties in every
direction.

How many independent elastic constants are there for an isotropic material?
There are 81 independent elastic constants for generally anisotropic material and
two for anisotropic material. Let us summarize the reduction of elastic constants
from generally anisotropic to isotropic material. For a generally anisotropic material
there are 81 independent elastic constants.
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What is strain compatibility method?

A concrete stress block is used with a strain compatibility method to predict flexural
and axial strengths of concrete-filled tube columns. The accurate stress-strain relations
of the confined concrete and steel should be used to get an exact solution while using
the strain compatibility method.

What is compatibility condition?

Compatibility conditions are mathematical conditions that determine whether a
particular deformation will leave a body in acompatible state. In the context of
infinitesimal strain theory, these conditions are equivalent to stating that the
displacements in a body can be obtained by integrating the strains.

Are composites homogeneous?

A homogeneous material is one where properties are uniform throughout, i.e. they do
not depend on position in body. An isotropic material is one where properties are
direction independent. Composites are inhomogeneous (or heterogeneous) as well as
non-isotropic in nature.

Are composites isotropic or anisotropic?

Anisotropic materials have different material properties in all directions at a point in the
body. Bulk materials, such as metals and polymers, are normally treated as
isotropic materials, while composites are treated as anisotropic. Composites are a
subclass of anisotropic materials that are classified as orthotropic.

What is isotropic material?

Isotropic material means a material having identical values of a property in all
directions. Glass and metals are examples of isotropic materials. Anisotropic
material's properties such as Young's Modulus, change with direction along the object.
Common examples of anisotropic materials are wood and composites.



Chapter 9

CONSTITUTIVE RELATIONS
FOR LINEAR ELASTIC SOLIDS

Figure 9.1: Hooke memorial window, St. Helen’s, Bishopsgate, City of London
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9.1 Mechanical Constitutive Equations

Recall that in Chapters 2, 3 and 8 we briefly introduced the concept of a constitutive equation,
which generally relates kinetic variables to kinematic variables in the application of interest. With
respect to the application of the analysis of mechanical deformations in solids, the kinetic variable
is the stress tensor, o, whereas the kinematic variables are the displacements uz, u,, u,, and the
strain tensor, € which includes derivatives (sometimes called gradients) of the displacements. Since
it is generally observed that rigid body displacements do not induce stresses, the displacement field
Ug, Uy, Uz, Will not enter into a mechanical constitutive equation. Thus, the constitutive equations
will in general relate stress, o, to strains, €, and temperature 7. In 1660, Robert Hooke observed
that for a broad class of solid materials called linear elastic (or Hookean), this relationship may be
described by a linear relationship. Hooke originally considered the test of a uniaxial body with a
force (stress) applied only in one direction and measured the corresponding elongation (strain) to
obtain:
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X E
A=cross-sectional 6. =Ee
area yy Yy
>
EW

Figure 9.2: Stress-Strain Curve for Linear Elastic Material

For a general three-dimensional state of stress, there are 6 independent stresses and 6 independent
strains; therefore, the linear relationship between stress and strain can be written in matrix form as:

o=[Cle (9.1)

where [C] is a 6 x 6 matrix of elastic constants that must be determined from experiments. In
expanded form, these 6 equations become:

0wz = Chi€aa + Cragyy + Ci3esz + Cracy, + Ciseze + Cr€ay
Oyy = Co1600 + Cneyy + Coze, + Coseyz + Coseop + CogEay
0. = 31650 + Csaeyy + Cs3e,, + Csuey, + Cs5€.0 + Crpeny
Oy: = Cuniegy + Caoeyy + Cugey + Cuacy, + Cuseg + Capeny (9.2)
Oze = Cs1600 + Csacyy + Cs3622 + Csaeys + Cssesp + Copeny
Ozy = C1600 + Coaeyy + Co3ezz + Coacyz + Cose0 + CopEay

It is interesting to note that Robert Hooke first proposed the above “law” publicly in an anagram
at Hampton Court (1676) given by the group of letters:

ceiiinosssttuv.
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In 1678 he explained the anagram to be
“Ut tensio sic vis,”

which is Latin meaning “as the tension so the displacement” or in English “the force is proportional
to the displacement.” Students may recall that during this time period, science and scientific writing
was criticized and hence Hooke thought it necessary to discretely disclose his scientific finding with
an anagram.

Note that in the previous chapters stress and strain were represented as (3 X 3) matrices. It
is convenient, however, here to represent them as (6 x 1) column vectors since they have only
6 independent components (stress due to conservation of angular momentum and strain by its
definition). We then write

wa Ell/'w
Oyy Eyy
{O’} _ 02z {E} _ Ezz
Oy ’ Eyz
O—ZCL' €Z[L’
Oy Exy

By adopting this representation for o and &, their linear relationship (9.2) can be easily written
in matrix form:

Ozx Cii Cip2 Ciz Ciy Ci5 Cie Exx
Tyy Ca1 Coa Caz3 Oy Cos Cog Eyy
022 | _ | O Cs2 Csz3 Cs Cs5 Cse €2z 9.3)
Oyz Cy1 Cyo Cy3 Cyy Cus Ciyg Eyz '
Oz Cs1 Cs2 Csz3 Csy Cs5 Cse Exz
Ozy Co1 Cs2 Cs3 Ces Cos Ces Exy

o If a material is homogeneous then the constants (Cy;, i = 1,...,6 and j = 1,...,6) are all

independent of x, y, z for any time, ¢.

o If a material is isotropic, then for a given material point, C;; are independent of the orientation
of the coordinate system (i.e., the material properties are the same in all directions).

o If a material is orthotropic, then for a given material point, C;; can be defined in terms of
properties in three orthogonal coordinate directions.

o If a material is anisotropic, then for a given material point, C;; are different for all orientations
of the coordinate system.

In order to determine the material constants in equation (9.3), consider a uniaxial tensile test
using a test specimen of linear elastic isotropic material with cross-sectional area A and subjected
to a uniaxilly applied load F' in the axial (y) direction as shown below. The cross-section may be
any shape but generally a rectangular or cylindrical shape is chosen. For a rectangular specimen,
assume a width W and thickness ¢ so that the cross-sectional area is A = Wt. Assume a small gauge
length of L for which the axial deformation will be measured during the load application.

During the uniaxial tensile test, we observe that the gauge length changes from L to L*
and the gauge width decreases from W to W*. We also observe a decrease (contraction) in the z
dimension. We further observe no change in angular orientation of the vertical or horizontal elements
and conclude that for uniaxial loading, no shear strains are produced. This leads us to postulate
the following strain state: €,z,€yy, €22 # 0, €y, €yz, €22 = 0. The axial stress and strain in the axial
(y) direction are defined to be
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<Aafter deformation

A=cross-sectional
area

test specimen

Figure 9.3: Experimental Measurement of Axial and Transverse Deformation

Oyy =
(L*-1L)
L

Eyy =

SISk

The strain the in the transverse (z) direction due to the axial load is

AW (W* —W)

fre Ty T T W

If we plot awial stress wvs. awial strain and transverse strain vs. axial strain, we obtain the
following two plots:

F AW
g = — E ="
yy Tx
A A w
E _ _
oyy = Feyy Epe = —VEyy
1
> >
AL 1

Figure 9.4: Experimental Results for Axial Stress vs. Axial Strain & Transverse Strain vs. Axial
Strain

From these two plots, we can write oy, = Fey, and €, = —ve,, for the uniaxial tension test.
Consequently, we may define the following two material constants from this single uniaxial test:

e [/ = slope of the uniaxial oy, vs. ey, curve = a material constant called Young’s modulus
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e v = —%22 = pegative ratio of the strain normal to the direction of loading over the strain in
the loading direction = a material constant called Poisson’s ratio

If the transverse strain were measured in the z direction, we would find the same ratio for transverse

to axial strain: v = —===.
vy
Combining these equations, we can write the two transverse strains entirely in terms of the axial
. — — Tyy — — Tyy
stress oyy: €pp = —VEyy = —V (T) and €,, = —veyy = —v (T)

In order to obtain a complete description of three-dimensional constitutive behavior, consider
a test where we apply normal tractions (stresses) in the z, y and z directions simultaneously and
measure the strain only in the z direction. For a linear material response, we may use the principle
of linear superposition and consider three separate cases as shown below:

ag.
vy Uyy
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Figure 9.5: Experimental Test with all Components of Normal Stresses Applied

normal strain in x direction due to oy

E(EI

normal strain in z direction due to oy

+ o

normal strain in x direction due to o,
1 v v
Oy — — Oy — —
E EY F

O-ZZ

or

1
Exp = E [0z — V(0yy + 022)] (9.4)

The stress in the z direction increases the strain in the x direction while the transverse stresses
causes a contraction (decrease in &,;).
Doing similar experiments in the y and z directions gives:

1

Eyy = B [Oyy — V(0zx +022)] (9.5)
1

€y, = z (022 — V(0w + Oyy)]

Experiments with shear tractions will show that a shear stress o, in the z-y plane produces only
shear strain ¢, in the z-y plane for a state of pure shear loading (i.e., no normal strain is observed
so that the shear strain is uncoupled from the normal strain).! Thus, we obtain the following

1Keep in mind that even for the case of pure shear, if one calculates shear stresses (or strains) at some angle 0
from the z-axis (Mohr’s circle), one may obtain non-zero normal stresses (or strains) for the off-axis planes.
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experimental observations for the shear strains:

1+v

Emy = —E Ozy
1

Ens = %am (9.6)
1+v

Eyz = Tayz

Combining equations (9.4), (9.5) and (9.6), Hooke’s law for a linear elastic isotropic solid with a
three-dimensional stress state becomes:

Hooke’s Law for a Linear Elastic Isotropic Solid

1

Exx = E [wa - V(‘Tyy + Uzz)]
1

Eyy = B [oyy — V(02z + 022)]
1

€zz = B (022 = V(02z + 0yy)]
1+v

Exy = E_O'a:y (97)
1+v

Exz = —F= Ozz

’ E

1+v

(':yz = I Oyz

where £ = Young’s modulus and v = Poisson’s ratio.

It should be noted that in materials that undergo permanent deformation, the above model is
not accurate (such as metals beyond their yield point, or polymers that flow). A typical uniaxial
stress-strain curve for a ductile metal is shown below:

Oz
A

® yield stress

B ultimate stress
E X failure stress

EEL‘w

Figure 9.6: Typical Stress-Strain Curve for Ductile Metal

An algebraic inversion of the strain-stress relationship (9.7) provides the following relationship
of stress in terms of strain:
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1—2v 11:211 1—2v 0 00 Exx
B v 1w T 0 00 Eyy
= . Y. 0 0 0 €
= 1-2v 1—2v 1—2v 2z 98
= 0 T T 10 0] e (9-8)
0 0 0 010 €22
0 0 0 0 0 1 Eay
or,
Hooke’s Law for a Linear Elastic Isotropic Solid
E
Oxx W [(1 _U)Eww+V5yy+V€ZZ]
Tyy ) Vees (1= V)oyy — ves]
(o} =4 %= L = T [Vews +veyy + (1 = v)e.:] 09)
Oxy £ .
1+v =%y
Tuz ﬁgzz
OyZ H_Ugyz

where E = Young’s modulus and v = Poisson’s ratio.
The term ﬁ = 2@ defines a shear modulus, G, relating shear strain and shear stress (similar
to Young’s modulus, E, for extensional strain). Thus, the shear modulus is given by:

E
G=——— 9.10
2(1+v) (9.10)
Note that the shear strain e, is related to engineering shear strain v;, by vzy = 2e4y =

2(1£2) 0,y = 22 so that 0,y = Gay = 2Geyy,.

Oy
A

Ouy = Gy = G2e4,
G = shear modulus

E
2(1+v)

,Y

/;L'y

Figure 9.7: Experimental Results for Shear Stress vs. Engineering Shear Strain

Note that G is defined in terms of E and v and consequently G is not a new material property.
Thus, for a homogeneous linear elastic isotropic solid, we conclude that only two material properties
(Young’s modulus, F, and Poisson’s ratio, v) are required to completely define the three-dimensional
constitutive behavior.
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The stress-strain equations may also be written in terms of shear modulus to obtain:

E 2G
Opz = A a-m) (1 = v)epe +veyy +ves.] = 2 (1 = V) €gp + veyy + Ve ]
E 2G
Uyy = m [VEQ;Q; + (1 — V)Eyy — VEzZ] = m [Vgxz + (1 — V) Eyy + VEZZ]
E
Oyr = m[ygxm+ygyy+(l —V)Ezz] = m[l/fma:"rl/fyy"'(l_y)Ezz]
E
Oyz = ]_—|——]/€yz = 2G€yz (911)
E
Oz = —Eyp = 2G€ZI
1+v
E
Ozy = ]_—|——]/€wy = 2G€$y
Side Note: If the definition of €., and ., from v = — S22 = — 222 ig substituted into equation (9.9),
y

Yy yy
we obtain for the uniaxial bar extension experiment described previously:

E

e = T3y =z |7V Vew) T vey Fv(=)e] =0
E

Oyy = 1+ )1 —20) [_V%yy + (L= v)eyy — VQEyy] = Eey,

0., =0

This result is consistent with all observations made regarding the nature of stress for the uniaxial
test with an applied stress of o, .

9.2 Constitutive Equations with Thermal Strain

Experimentally, we observe for a linear isotropic metal that a temperature increase, AT, produces a
uniform expansion but no shear and the expansion is proportional to a material constant « (coeffi-
cient of thermal expansion). The additional strain due to heating is thus: €, = €y, = €,, = AT
Thus, the constitutive equation for a linear elastic isotropic solid (9.7) may be modified by the
addition of the thermal strain to the normal strain components:

Cxx = %[am —v(oyy +022)] + AT

Eyy = %[Uyy — V(042 + 022)] + @AT

€rr = %[022 — U(0zq + 0yy)] + AT

€oy = (HTV)UW (9.12)
e = (0

1+v
Eyz = (T)U’yz
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These equations can be inverted to obtain stress in terms of strain:

Opw = #[(1—1/)5 + veyy +ve ]_Ea—AT
o (14+v)(1—2v) o v =1 -2v)
E EaAT
Oyy = EE)] [Vers + (1 — v)eyy + ves.] — -2
E EaAT
Oz = m[ygmw =+ VEyy + (1 — V)Ezz] — m
E
Opy = maw (9.13)
_ E
Ozz = mng
_ E
i T 1)V

In the above, AT = AT(z,y,z) and represents the increase in temperature from a “reference”
temperature where the thermal strain is zero. It should be noted that the first term in the extensional
strain terms above (the [ ] term) is due to elastic behavior of the material (i.e., it has Young’s modulus
in it). The second part is due to thermal strain. We can separate the total strain into elastic and
thermal strains:

total __ elastic thermal

81’.’1) - Sww +e
total  __ elastic thermal

Eyy " = Epy e (9.14)
total __ elastic thermal

522 - ezz +e

The elastic (also called mechanical) and thermal terms are given by:

elastic 1
mlx ! = E[UM —v(oyy +02:2)]
. 1
EZlyastlc _ E[Uyy _ V(Jzz + Uzz)] (915)
i 1
Egzaétw = & (022 — V(0z + 0yy)]
gthermal — aAT

total _total _total

The terms 77, 7', €27 represent the total strain as measured or observed, and are thus equal

to their deformation gradient definitions, i.e., for small strain,

Etotal — ¢ o %
= rr =

Tx or

total auy

vy vy ay ( )

e:;total — e = %
= 2y =

zz 9z

We state once again that shear strains have no thermal component for an isotropic material. Exam-
ples of problems involving thermal strain will be considered in Chapter 10.

Some typical values of material properties for isotropic metals are provided in the table below.
Note that the values of E (Young’s modulus) are typically in the million psi or GPa range for
engineering materials, while the values of v are between zero and 0.5 (0 < v < 0.5). The yield
strength represents the stress level at which the metal yields (becomes inelastic). For ductile metals,
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the ultimate tensile strength is typically 10 to 50% higher than the yield strength. It should be
noted that material properties for commonly used metals must satisfy specifications established by
regulatory agencies. Values in Tables 9.1 and 9.2 that are not provided are unknown for purposes
of presentation herein and they should not to be interpreted as zero. The reader may with to consult
other sources for the omitted values.

For non-metals, properties may vary significantly depending upon many variables (for example,
wood has a Young’s modulus varying from 0.1 x 10% psi to 2 x 10° psi depending upon the tree species
and direction of wood grain; the modulus of concrete will depend on the concrete/aggregate ratio
and curing process). Examples of non-metals commonly used are concrete (ultimate compressive
strength of 5 ksi but zero tensile strength; with an elastic modulus in compression of 3 x 10® psi)
and Douglas fir (parallel to grain, ultimate compressive strength of 7 ksi; with an elastic modulus
of 1.6 x 10° psi).

Material Density | Young’s | Poisson’s | Yield Ultimate | Coefficient of
( iln—bS ) Modulus | Ratio Strength Tensile Thermal
(106 psi) (ksi) Strength | Expansion
(ksi) (1076>
°F
Tension| Shear
Aluminum
2024-T4 0.100 10.5 0.33 40 62 12.9 (200 °F)
6061-T6 0.098 9.9 0.33 36 21 42 13.0 (70-200 °F)
Steel
Structural (A36) | 0.284 | 30.0 0.29 36 21 65 6.5
AISI 1025 0.284 29.0 0.32 36 55 6.8 (70-200 °F)
5Cr-Mo-V 0.281 30.0 0.36 200 240 7.1 (80-800 °F)
Copper
G3-Heat Treated | 0.272 16.0 60 110 9.0 (70-570 °F)
Titanium
Ti-5A1-2.55n 0.162 15.5 110 115 5.2 (200-400 °F)
Ti-6M-4V 0.160 16.0 0.34 120 72 130 4.6 (200-400 °F)

Table 9.1: Structural Material Properties for Selected Metals (US Customary Units)

Example 9-1
Given:
—y¥= 0 0
[o] = 0 0 0 where M, and I, are constants
0 0 0
Required:

(a) Verify that the stress tensor satisfies the Conservation of Linear Momentum.
(b

)
) Determine the components of the infinitesimal strain tensor, €.

(c) Determine the components of the displacement, u,, u,, and u,.

(d) Describe the displacement and physical problem described by these equations. Use as reference
the figure below.
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Material Density | Young’s | Poisson’s | Yield Ultimate | Coefficient of
( % ) Modulus | Ratio Strength Tensile Thermal
(GPa) (MPa) Strength | Expansion
(MPa) (10—6>
°C
Tension| Shear
Aluminum
2024-T6 2.79 73.1 0.35 414 469 23
6061-T6 2.71 68.9 0.33 245 145 | 290 24
Steel
Structural A36 7.85 207 0.29 248 145 | 445 12
Stainless 304 7.86 193 0.27 207 517 17
Copper Alloy
Bronze C86100 8.83 103 0.34 345 655 17
Titanium
Ti-6Al-4V 4.43 120 0.36 924 1,000 9.4
Ti-6M-4V 4.34 110 0.34 827 495 | 895 8.3

Table 9.2: Structural Material Properties for Selected Metals (SI Units)

5L
}
-
y

Figure 9.8:

(a) z-component of linear momentum:

004y  00zy 004,
v or + dy * 0z trg

=0

0(-vi:
(5'xI ) =0

- Stress tensor satisfies the Conservation of Linear Momentum

(b) The strains are given by:

Oz v
Exx = ?7 Eyy €2z = _Eaa::r; Exy = €xz = Eyz = 0
M, vyM, vyM,
Exx = Y y  Eyy = sy Ezz =
I..E ET,, ET,,

A Bo
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(c) Integrate the displacement equations and apply boundary conditions:

6’1,% Mz Mz + C
5$$ = — = — e r = —
oz YEL. Y Ypr.,r
v\
ou,  vyM, V(T) z
= — = _ 7 C
w= %y T EL, W BL. ¢
Ou, vyM, _ vyM,
2=, T BL.  “ T EL 1O

’U,I|I:0:0, 01:0
uy|y:0 = O, CQ =0
UZ|Z:0:0, 03:0

MZ

Uy = _yszz
_vv M,
o= 9EY T,
v M,

U, = Eyzjzz

(d) The displacement in the z-direction is negative (shortening) when y is positive due to the
negative u, term. If y is negative the displacement in the a-direction is positive (expanding).
In the y-direction and z-direction the displacement is expanding when y is greater than zero and
vice versa. Displacement in the y-direction changes with respect to 2, and in the z-direction
it changes with respect to y.
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Deep Thought

Ut tensio sic vis!
Ut tensio sic vis!!
Ut tensio sic vis!!!
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9.3

9.1

9.2
9.3

9.4

9.5

9.6

9.7

CHAPTER 9. CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS

Questions

Which conservation laws are especially useful for describing stresses and strains? How are
stress and strain related?

Write the equations that result from an inversion of the stress-strain relationship.

Describe in your own words the meanings of the state of plane stress and the state of plane
strain?

Describe the two types of problems which when solved using the theory of plane elasticity
provide exact solutions.

Consider small shear strain for a moment. It is often given in terms of an angle. Explain why
this is done.

What is a constitutive relation? Write down the general constitutive relation in terms of
Cauchy stress and strain.

For an elastic, isotropic solid material, how many constants are required to define the consti-
tutive relations? Name these and define their meaning.

9.4 Problems

9.8

9.9

9.10

9.11

Structural steel is subjected to the deformation defined by u,(z,y, z) = 0.002z, u,(z,y,z) =
0, u.(z,y,2z) =0 (displacements in inches). Determine the following in US units:

a) Infinitesimal strain tensor.

b)

¢) Draw Mohr’s Circle for the given state of stress.
)

d

Stress tensor.

Principal Stresses and Strains.

Repeat steps a and b in 9.8 for u,(z,y,z) = 0.0022% + 0.001z, uy(z,y,2) = 0.002zy,
u,(w,y,2) = 0.00122.

GIVEN: A Hookean material with £ = 10 x 10° psi and v = 0.5 experiences the following
deformation: uy(z,y,2) =0, uy(z,y,2) = 0.004z, u.(z,y,2) =0
REQUIRED:

ou Ju ou
a) Sketch u, versus x, u, versus y, and u, versus z, and calculate %=, 5y os

b) Calculate the infinitesimal strain tensor.

c¢) Calculate the stress tensor.

GIVEN: v =0.25 and E = 2.0 x 10'° Pa, and strain tensors as follows
0.002 0.004 O 0 0.005 0
(1) | 0.004 0003 0|, (2) | 0005 004 0
0 0 0 0 0 0.006
REQUIRED:

(1) Calculate the stress tensors;

(2) How much is the relative volume change (the dilatation) for this deformation, and compare
the results obtained by using both finite strain formula and the small strain formula.
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9.12 GIVEN: v =0.33 and FE = 15.0 x 103 MPa, and stress tensors as follows

10 MPa 4 MPa 0 20 MPa 50 MPa 0
(1) 4 MPa 30 MPa 0 (2) 50 MPa 0 0
0 0 0 0 0 6 MPa

REQUIRED: Calculate the strain tensors.

9.13 GIVEN: uy = 21074, u, = £10™%, and uy = 0, and material constants £/ = 2.6 x 10'°, and
v =0.3.

(1

(2

(3

(4

Compute infinitesimal strain tensor.
Compute the corresponding stress tensor.

What are the principal stresses and principal strains?

— O ~— ~—

Are the principal stresses and strains acting in the same directions?

9.14 A steel plate lies flat in the z-y plane and has dimensions 20 cm x 40 cm. If the plate is
uniformly heated throughout at 1000 °C and the thermal expansion coefficient is given by
a=11x10"6 ﬁ, calculate the new dimensions of the plate due to thermal expansion.

9.15 A thin rectangular sheet of linearly elastic material has an z-y coordinate system located at
its lower left corner. The body extends 15 in. in the = direction and 8 in. in the y direction.
The material is isotropic with an F = 35,000,000 psi and v = 0.33. A plane stress condition
has been created by forces acting along the edges of the body with a displacement field of:

uy, = 1.44x107822%y

u, = —1.44x 10 %zy?
Write expressions for the surface force normal to and for the tangential surface force along the
upper 15 in. boundary as functions of z. Write expressions for the surface force normal to

and for the tangential surface force along the right 8 in. boundary as functions of y. Draw the
distribution of normal surface force along these two boundaries on a sketch of the body.

9.16 Use web resources to determine the following material properties. Provide the URL (http
address) that you used.

(a) Yield strength in shear of 2024-T4 and 2014-T6 aluminum.
(b) Poisson’s ratio and yield strength in shear for Ti-5A1-2.5S5n.
(c¢) All of the table values as presented in Table 9.1 for 4130 heat treated alloy steel.
(d) All of the table values as presented in Table 9.1 for balsa wood.
9.17 GIVEN: The isothermal (no temperature gradient) uniaxial bar specimen of 2024-T4 Alu-
minum (isotropic) shown below:

The axial displacements are measured to be:

u, = —0.02z in
uy = 0.000125z — 0.0005 in z in inches!!

REQUIRED:

1. Sketch the deformed configuration of the test section boundary (using the displacements
given above).

2. Calculate the infinitesimal strain tensor for the test section.
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Test Section \

¥

— e—1.25m

Problem 9.17

3. Calculate the stress tensor for the test section.

9.18 GIVEN: A linear isotropic ThermoFElastic plate of Stainless 304 is subjected to a uniform
temperature change of AT and is assumed to be in a state of stress as shown below. At
equilibrium, the AT is known.

—-125 =50 O
o= -50 —100 0 | MPa
0 0 0

REQUIRED:

a) Calculate the infinitesimal strain tensor when AT = 0 °C. (review equations 9.12 and
9.13 in the notes)

b) Calculate the infinitesimal strain tensors for the two cases:
when AT = 100 °C, and when AT = 25 °C.

c¢) Find the temperature change AT necessary to produce zero strain.

9.19 GIVEN: Consider the state of stress called plane stress in which non-zero stresses exist in only
one plane.

REQUIRED:

a) For a state of plane stress in the x-y plane, show that the constitutive equations for
an elastic isotropic material (isothermal case) reduce to the following. Hint: start with
the constitutive equations for the general 3-D elastic, isotropic case and reduce to plane
stress; see equation 10.6): SHOW ALL STEPS.

Orac = m[&cﬁwyy]

Oy = ( Exy
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b) Starting with the above relations, show that the strains for plane stress in the z-y plane
become those shown below (see equation 10.7). You must show all steps necessary to

obtain the relations below.

1

Exz = E[Um — VO]
1

Eyy = E[Uyy — V0]
1+v

Eaxy = (T)Uwy

v
Ezz = _E(U:vw + Uyy)

You may use Scientific Workplace to do the matrix algebra.

9.20 GIVEN: Given that for a general orthotropic elastic material there are 12 unique coeffecients

such that:
r 1 v v 7
_ Fas  Eag Ess
PI=1 0" " 0 X o o0
K23
0 0 0 0 - 0
K31
0 0 0 0 0 .=
The constitutive equation for this form would then be:
{e} = [DI{s}
where the stress have the following values
Oge = D ksi Exu
Oyy = 10 ksi Eyy
Oy = 20 ksi _ €2z
{o} = oy = 0 ksi ’ {e} = Eyz
0,z = 0 ksi €rp
Ogy = 7.5 ksi Exy

REQUIRED:

a) Write the stress tensor in its more common form (i.e., as a tensor or matrix)
constitute generalized plane stress? Why or why not?

Recall that generalized plane stress is a requirement for Mohr’s Circle

b) Suppose that the 12 material coefficients have the following values:
Ell = 106 pSi
Fy = 3x107 psi
Es3 = 0.2 x 10° psi

. Does this
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V12
V13
V21
V23
V31

V32

Moz =
M3 =

H12

Calculate the infinitesimal strain tensor.

0.2
= 0.25
= 0.33
= 043
= 0.05

0.06

10* psi
2 x 10* psi
3 x 10* psi

¢) Write the strain tensor in its more common form. Does this constitute generalized plane

strain? Why or why not?
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SOLID MECHANICS SHORT QUESTIONS AND ANSWERS
UNIT =11

1.) Definition of "plane stress’
Plane stress exists when one of the three principal stresses is zero. In very flat or
thin objects, the stresses are negligible in the smallest dimension so plane
stress can be said to apply. Plane stress is a two-dimensional state of stress in
which all stress is applied in a single plane

2.) What is plane shear stress?
Shear stress considering the specific plane is called in plane shear stress and
other two stresses are out-plane shear stress. This type of stress generally found
in thin cylindrical closed pressure vessel where max

3.) What is meant by principal stress?
Principal Stresses. It is defined as the normal stress calculated at an angle
when shear stress is considered as zero. The normal stress can be obtained for
maximum and minimum values.

4.) What is the difference between von Mises stress and max principal
stress?
Von Mises is a theoretical measure of stress used to estimate yield failure criteria
in ductile materials and is also popular in fatigue strength calculations (where it is
signed positive or negative according to the dominant Principal stress),
whilst Principal stress is a more "real” and directly measurable stress

5.) What is plane strain problem?
A plane strain problem could be taken as one in which the strain in the z-
direction is the same at all points in the (x, y) plane.

6.) Define Uniquiness.

In mathematics, a uniqueness theorem is a theorem proving that certain
conditions determine a unique solution. Picard — Lindel 6f theorem,

the uniqueness of solutions to first-order differential equations.
Thompson uniqueness theorem in finite group theory.
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7.) What is meant by superposition?
The principle of superposition states that, when two or more waves of the same
type cross at some point, the resultant displacement at that point is equal to the sum
of the displacements due to each individual wave.

8.) What is the difference between plane stress and plane strain?
In mathematical term a state of plane stress in one in which stress along z-
direction is ZERO and a plane strain condition is one in which strain associated
along z-direction is ZERO. For physical understanding of the situation let us
consider two plates one thick and the other thin.

9.) Define plane strain.

Plane strain A stress condition in linear elastic fracture mechanics in which
there is zero strain in the direction normal to the axis of applied tensile stress and
direction of crack growth. It is achieved in thick plate, along a direction parallel to the
plate.

10.) Which type of stress is plane stress?
Plane Stress: If the stress state at a material particle is such that the only non-
zero stress components act in one plane only, the particle is said to be in plane
stress. The axes are usually chosen such that the yx - plane is the plane in which
the stresses ac

11.)
What is Mohr's circle of stress?
Mohr's circle, invented by Christian Otto Mohr, is a two-dimensional graphical
representation of the transformation law for the Cauchy stress tensor. ... Karl
Culmann was the first to conceive a graphical representation for stresses while
considering longitudinal and vertical stresses in horizontal beams during
bending.

12) What are the 3 principal stresses?
The three principal stresses are conventionally labelled o1, o2 and o3. o1 is the
maximum (most tensile) principal stress, o3 is the minimum (most compressive)
principal stress, and o2 is the intermediate principal stress..
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Module: 7 Torsion of Prismatic Bars

7.2.1 TORSIONOF ELLIPTICAL CROSS-SECTION
Let the warping function is given by
v = Axy (7.15)

where A is a constant. This also satisfies the Laplace equation. The boundary
condition gives

dy dx
Ay -y) == —(AX+X)—=0
(AY -Y) o~ (AX+X) o

dy dx
A-1) ——-x(A+1)—=0
or y( )OIS ( +)O|S

. dx dy
e, (A+1)2x —-(A-1)2y—=0
be, (A+Dax =~ (A-1)2y ¢

d 2 2
or E[(AJFDX -(A-1)y°]=0
Integrating, we get
(1+A)x*+(1-A)y? = constant.

This is of the form
2 2

X y_l

2’ b

These two are identical if
a_2 _1-A

b> 1+A

b? —a?

b? +a?

or A=

Therefore, the function given by
b*—-a’
[// =
b* +a?
represents the warping function for an elliptic cylinder with semi-axes a and b under torsion.
The value of polar moment of inertia J is

J= ”(x2 +y? + Ax? — Ay?)dxdy (7.17)

Xy (7.16)

Applied Elasticity for Engineers T.G.Sitharam & L.GovindaRaju



= (A+1) ” x*dxdy + (1— A)H y2dxdy
J = (A+1)1,+(1-A)l,

3 3
ma’b
where |, =

and I, =

Substituting the above values in (7.18), we obtain

ma’b?
T a?+Db?
But 0= Mo _ M.
Gl, GJ
Therefore, M; = GJ6@
7z_a3b3
=GO ——
a’ +b?
2 2
or 0=ﬂa Jgt;
G nma’b

The shearing stresses are given by
7, =GO (6_1// + XJ
oy

2 2 2 2
:Mta +b (b a +1]x

ma%b® | b?+a’
_2Mx
e
2M
Similarly, 7, = tz
mab

Therefore, the resultant shearing stress at any point (X, V) is

2M
_ 2 2 _ t
T= T, +Ty = b’

Determination of Maximum Shear Stress

lb*x? +a4y2]%

Module 7/Lesson 2

(7.18)

(7.19)

To determine where the maximum shear stress occurs, substitute for x> from

XZ y2
PO

or X =a’(1-y*/b?)

Applied Elasticity for Engineers
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2M,
ma’b®
Since all terms under the radical (power 1/2) are positive, the maximum shear stress occurs

and 7=

[a2b4 +a%(a? - bz)yz]%

when y is maximum, i.e., when y = b. Thus, maximum shear stress 7., occurs at the ends of
the minor axis and its value is

_ 2M 41.2\1/2
o = @)
Therefore, Ty = Z—ME (7.20)
mab

For a = b, this formula coincides with the well-known formula for circular cross-section.
Knowing the warping function, the displacement w can be easily determined.

M, (b*-a?%)
ma*h’G
The contour lines giving w = constant are the hyperbolas shown in the Figure 7.4 having the

principal axes of the ellipse as asymptotes.

Therefore, w = Oy = (7.21)

. Torque
I Depressed
b (w negative)
!
Elevated
(w positive)
-~

Figure 7.4 Cross-section of elliptic bar and contour lines of w

7.2.2 PRANDTL’S MEMBRANE ANALOGY

It becomes evident that for bars with more complicated cross-sectional shapes, more
analytical solutions are involved and hence become difficult. In such situations, it is

Applied Elasticity for Engineers T.G.Sitharam & L.GovindaRaju
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desirable to use other techniques — experimental or otherwise. The membrane analogy
introduced by Prandtl has proved very valuable in this regard.

Let a thin homogeneous membrane, like a thin rubber sheet be stretched with uniform
tension fixed at it’s edge which is a given curve (the cross-section of the shaft) in the
Xy-plane as shown in the figure 7.5.

D B+AB

7 | |z+§dx

(b)

Figure 7.5 Stretching of a membrane

When the membrane is subjected to a uniform lateral pressure p, it undergoes a small
displacement z where z is a function of X and y.

Consider the equilibrium of an infinitesimal element ABCD of the membrane after
deformation. Let F be the uniform tension per unit length of the membrane. The value of the
initial tension F is large enough to ignore its change when the membrane is blown up by the
small pressure p. On the face AD, the force acting is F.dy. This is inclined at an angle /3 to

. . . 0z
the x-axis. Also, tan S is the slope of the face AB and is equal to 8_ Hence the component
X

0z
of Fdy in z-direction is (— de&}. The force on face BC is also Fdy but is inclined at an

angle (B + Ap) to the x-axis. Its slope is, therefore,

0z 0oz

— 4+ —| — |dx

OX OX\ OX

and the component of the force in the z-direction is

dy g+£(gjdx
OX OX\ ox

Applied Elasticity for Engineers T.G.Sitharam & L.GovindaRaju
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Similarly, the components of the forces Fdx acting on face AB and CD are

-Fdxg and Fdx §+i(§)dy}
oy oy oy oy

Therefore, the resultant force in z-direction due to tension F

B 2 2
=— deﬂ+ Fdy g+a—§dx - Fdxg+ Fdx g+8—§dy
OX | OX  OX oy oy oy

2 2
=F [a—f + 8—fjdxdy
oX® oy

But the force p acting upward on the membrane element ABCD is p dxdy, assuming that the
membrane deflection is small.

Hence, for equilibrium,

0’z 0%z
Fl —+—|=-P
oX® oy
2 2
z z
0z 02 oF (7.22)
ox° oy
Now, if the membrane tension F or the air pressure p is adjusted in such a way that p/F
becomes numerically equal to 2G 0, then Equation (7.22) of the membrane becomes identical
to Equation (7.8) of the torsion stress function ¢. Further if the membrane height z remains
zero at the boundary contour of the section, then the height z of the membrane becomes

numerically equal to the torsion stress function ¢ = 0. The slopes of the membrane are then
equal to the shear stresses and these are in a direction perpendicular to that of the slope.

or

Further, the twisting moment is numerically equivalent to twice the volume under the
membrane [Equation (7.14)].

Table 7.1 Analogy between Torsion and Membrane Problems

Membrane problem Torsion Problem
A ¢
1 G
S
P 20
aa
ox oy
2 (volume M,
beneath membrane)

Applied Elasticity for Engineers T.G.Sitharam & L.GovindaRaju
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The membrane analogy provides a useful experimental technique. It also serves as the basis
for obtaining approximate analytical solutions for bars of narrow cross-section as well as for
member of open thin walled section.

7.2.3 TORSION OF THIN-WALLED SECTIONS

Consider a thin-walled tube subjected to torsion. The thickness of the tube may not be
uniform as shown in the Figure 7.6.

P
'
D >
.
Aley)
iil@
N
B >
O w
—— 7
Lo

Figure 7.6 Torsion of thin walled sections

Since the thickness is small and the boundaries are free, the shear stresses will be essentially
parallel to the boundary. Let 7be the magnitude of shear stress and t is the thickness.

Now, consider the equilibrium of an element of length Al as shown in Figure 7.6. The areas
of cut faces AB and CD are t; Al and t, Al respectively. The shear stresses (complementary
shears) are 7; and 7.

For equilibrium in z-direction, we have
'TltlAI + TgtgAIZO
Therefore, 7; t; = © t, = q = constant

Hence the quantity 7 t is constant. This is called the shear flow g, since the equation is
similar to the flow of an incompressible liquid in a tube of varying area.

Applied Elasticity for Engineers T.G.Sitharam & L.GovindaRaju



Module 7/Lesson 2

Determination of Torque Due to Shear and Rotation

Figure 7.7 Cross section of a thin-walled tube and torque due to shear

Consider the torque of the shear about point O (Figure 7.7).

The force acting on the elementary length dS of the tube = AF = 7t dS =q dS
The moment arm about O is h and hence the torque = AM, = (qdS) h
Therefore, AM, = 2qdA

where dA is the area of the triangle enclosed at O by the base dS.
Hence the total torque is
= X 2qdA+
Therefore, M; = 20A (7.23)

where A is the area enclosed by the centre line of the tube. Equation (7.23) is generally
known as the "Bredt-Batho" formula.

To Determine the Twist of the Tube

In order to determine the twist of the tube, Castigliano's theorem is used. Referring to Figure
7.7(b), the shear force on the element is 7t dS = qdS. Due to shear strain ¥, the force does
work equal to AU

i&,AU=%&w$5

:%&MSWAI
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=%(rtdS).Al.é (since t=Gy)
_ Tt?dsal
- 26t
_g’dsal
- 26t
_g°Al dS
TGt
MZAl dS
8A’G t
Therefore, the total elastic strain energy is
U=z M/ZAl ¢ dS
8A’G Y t
Hence, the twist or the rotation per unit length (Al = 1) is
_~oU _ M, (dS
T oM, 4AGTt
_ 20A (dS
T AAGY

AU =

or

q_gdS (7.24)

or 0= ——
2AGY t
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7.24 TORSION OF THIN-WALLED MULTIPLE-CELL CLOSED
SECTIONS

Figure 7.8 Torsion of thin-walled multiple cell closed section

Consider the two-cell section shown in the Figure 7.8. Let A; and A, be the areas of the cells
1 and 2 respectively. Consider the equilibrium of an element at the junction as shown in the
Figure 7.8(b). In the direction of the axis of the tube, we can write

-nty Al + ot Al + 73 13 Al =0

or nti= nh+ 5t

i.e,01=02+0s

This is again equivalent to a fluid flow dividing itself into two streams. Now, choose
moment axis, such as point O as shown in the Figure 7.9.

Applied Elasticity for Engineers T.G.Sitharam & L.GovindaRaju
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Figure. 7.9 Section of a thin walled multiple cell beam and moment axis

The shear flow in the web is considered to be made of q; and —Q, since gz = J; - J>.
Moment about O due to g, flowing in cell 1 (including web) is
M 4 = 2q1A1

Similarly, the moment about O due to g, flowing in cell 2 (including web) is
Mt2 =20, (Ax+Ay) - 20,A;

The second term with the negative sign on the right hand side is the moment due to shear
flow Qg in the middle web.

Therefore, The total torque is
M, = Mtl + Mt2
Mt = 2q1A1 + 2q2A2 (a)

To Find the Twist (6)
For continuity, the twist of each cell should be the same.

We have
- Qq ¢dS
2AG"- t

or 269=qud—s
AY t

10
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Leta; = §dTS for Cell 1 including the web
a = f{)dTS for Cell 2 including the web

ds
ap = §>T for the web only

Then for Cell 1

1
2GO= E(alql - a12q2) (b)
For Cell 2
1
2GO= E(azqz —a,,0,) (c)

Equations (a), (b) and (c) are sufficient to solve for q, g, and 6.

7.2.5 NUMERICAL EXAMPLES

Example 7.1
A hollow aluminum tube of rectangular cross-section shown in Figure below, is

subjected to a torque of 56,500 m-N along its longitudinal axis. Determine the shearing
stresses and the angle of twist. Assume G = 27.6x10° N/m?,

0.5

—» 1 |e— 0.01
0.012 !
| t,=0.006 |
L t o
Membrane SurfaceI | | :
|
| | | |
I By C 1
| | N A
: : TT T T TpT T T T : : gq=Shear Flow
N . v
A D
All Dimensions in metre
Figure 7.10
11
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Solution: The above figure shows the membrane surface ABCD
Now, the Applied torque =M, = 20A

56,500 = 2¢(0.5x0.25)

56,500 = 0.25q
hence, = 226000 N/m.

Now, the shearing stresses are
q 226000

0= — =18.833x10°N /m?
t, 2
= 42226000 o7 667, 105N /m2
) 0.006
3= 226000 =22.6x10°N /m?
0.01
Now, the angle of twist per unit length is
__q gds
2GAY t
Therefore,
0= 226000 {0.25 N 0.5 (2)+0.25}
2x27.6x10°x0.125| 0.012  0.006 0.01

or 8=0.00696014 rad/m

Example 7.2

Module 7/Lesson 2

The figure below shows a two-cell tubular section as formed by a conventional airfoil
shape, and having one interior web. An external torque of 10,000 Nm is acting in a
clockwise direction. Determine the internal shear flow distribution. The cell areas

are as follows:
A; = 680 cm® A, = 2000 cm?
The peripheral lengths are indicated in Figure
Solution:
as ,. .
For Cell 1, a; = §T( including the web)
67 33
= 4 —
0.06 0.09
therefore, a; = 148.3

12
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For Cell 2,
33 63 48 67
a= + + +
0.09 0.09 0.09 0.08

Therefore, a, = 2409

For web,

dpp = ﬁ =366
0.09

Now, for Cell 1,

1
2Go= E(alql —a;,0,)

1
= @ (1483q1 - 366q2)

Therefore, 2G6 = 2.189q; — 0.54Q,
For Cell 2,

1
2Go= E(azqz - a1zq1)

1
= m(2409q2 —366ql)

Therefore, 2G6 = 1.20q, — 0.18q;
Equating (i) and (ii), we get

2.18 q; — 0.540, = 1.200, — 0.180;
or 2.36q,-1.74¢,=0
or (,=1.36Q;

Module 7/Lesson 2

(i)

(i)

The torque due to shear flows should be equal to the applied torque

Hence, from Equation (a),

M =20, A; + 20, A,

10,000 100 = 2q; x 680 + 2, x 2000
=1360q; + 40000,

Substituting for (,, we get
10000 x 100 = 1360q; + 4000 x 1.36Q;
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Module 7/Lesson 2

Therefore,
J:=147Nand g, =200 N

Cell-1

— — — —

O.TOBCm

Figure 7.11

Example 7.3

A thin walled steel section shown in figure is subjected to a twisting moment T.
Calculate the shear stresses in the walls and the angle of twist per unit length of the
box.

g,

1
A

}
12a
! _.t_lL
N |

Figure 7.12

Solution: Let A; and A, be the areas of the cells (1) and (2) respectively.
2

A =R
A=

A, =(2ax2a)=4a?
For Cell (1),

a, =§ dts (Including the web)

7ma+ 2a
a, = "

For Cell (2),
ds
a2 = T

14
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Now,
For Cell (1),

1
2G0 = E(alql - a12q2)

 ra’ t t

2

a
= rtal [(2+7[)q1_2q2]

2
+.2G0 =—"[(x +2)q, - 29, ]
at

For Cell (2),
1
2Go =E(azqz _aqul)

__1[ea  _2a
4’|t ¢ ot ¢

2a
=m[4%—ch]
.-.2G@:i[4q -q,]
2at- - "

Equating (1) and (2), we get,

%[(”JFZ)% _Zqz]zi[ﬂ'q2 —a,]

2at

2 {(na+2a)ql_[§

|

2 1
or =[(z +2)a, - 29, ]==[49, - q,]
T 2

Applied Elasticity for Engineers

Module 7/Lesson 2
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Module 7/Lesson 2

2z +2), - 20,]=[4q, - q,]

T
A7 +2 8

(7[ )Q1__Q2_4q2+q1:0
T T

[—4(7[ * 2)+1}ql —{§+4}q2 =0
T T

[4(n+2)+n}ql _[8+4ﬂ}q2 o

T T

or (47 +8+7)g, = (8+47)q,
g, = S5 +8 q
o Az +8)"
But the torque due to shear flows should be equal to the applied torque.

ie, T =20,A +2q,A, ©)
Substituting the values of g,, A;and A, in (3), we get,

ma? 57 +8 )
T=2 42 4a
ql( 2 J [47”8}%

57 +8 q
Ar +8 )"

1 ={a2(ﬂ2(;i227;+16)} 1

(7[+2)T

T a2 (e? 1127 116)

= ma’q, + 8a2[

Now, from equation (1), we have,

269:%{(7”2\ (z+2)T _2(5ﬂ'+8)a2((ﬂ'+2)-|- )}

a?(r? +12r +16) 47 +8)a%(r? +127+16

(27 +3)T }

2Ga’t(z? +127 +16)

Simplifying, we get the twist as 6 = {

16
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Module 7/Lesson 2

Example 7.4

A thin walled box section having dimensions 2a x axt is to be compared with a solid
circular section of diameter as shown in the figure. Determine the thickness t so that the
two sections have:

(a) Same maximum shear stress for the same torque.
(b) The same stiffness.

le >l
< 2a >

W i > 1

| ] |

Figure 7.13
Solution: (a) For the box section, we have

T =20A
=27tA

T=2zt2axa
T
T=—7
4act
Now, For solid circular section, we have
T =
I p

(a)

r
Where | = Polar moment of inertia

o)
7a

Equating (a) and (b), we get

T2 = 16T3 - 64a%tT = 7a’T
4a‘t nma
=2

64

(b) The stiffness of the box section is given by

17
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Module 7/Lesson 2

_ 9 s
2GA t
Here T =20A 'q—L
T 2A
T a 2a a 2a
0= —+—+—+—
AGA* |t t ot ot
_ 6aT
4GA%t
_ 6aT
4G(2a% 't
6aT
—__ % C
16a*Gt (©)
The stiffness of the Solid Circular Section is
0=t =T =2 (d)
p G @ 7a
32
Equating (c) and (d), we get
6aT 32T
16a‘Gt Gra*
fa_32
16t =«
., bma
© 16x32

=3l
" 4\ 64

18
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Example 7.5

Module 7/Lesson 2

A two-cell tube as shown in the figure is subjected to a torque of 10kN-m. Determine
the Shear Stress in each part and angle of twist per metre length. Take modulus of

rigidity of the material as 83 kN/mm?.

2.5

«— 150

I =
l«—— 100—>] /

All dimensions in mm

Figure 7.14

Solution: For Cell 1
Area of the Cell = A;= 150 x100 = 15000mm?

a, =§ dts (including web)
150 100 150 100
= + + +
5 5 25 5
=130
For Cell 2
Area of the cell = A, = %xlSOx (125)* - (75)°
= 7500mm?

-, =§ dts (including web)

150 125 125
= + +
25 25 25
-.a, =160
For the web,
150
alz = E = 60

Applied Elasticity for Engineers
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Module 7/Lesson 2
For Cell (1)
1
2G0 = E(alql - a12C12)

1
5.2G0 =——(130qg, — 60
15000 (130q, - 60d,) (a)

For Cell (2)
1
2G0 = E(azqz - a1zq1)

1
=ﬁ(160q2 ~60q,) (b)

Equating (a) and (b), we get
1 1
———(130q, — 60g,) = ——1(160q, — 60
TE00g (L300 —600,) == (160g, —60q;)
Solving, @, =1.52q, (c)

Now, the torque due to shear flows should be equal to the applied torque.

ie, M, =2q,A +2q,A,

10x10° = 2q,(15000) + 24, (7500) (d)
Substituting (c) in (d), we get

10x10° = 2x15000(1.52q, ) + 20, (7500)

-0, =165.02N
-0, =1.52x165.02 = 250.83N

Shear flow in the web = q, = (q, — g, ) = (250.83 -165.02)
~.q, =85.81IN

fr =L o 2083 g 1o 2
t 5

q, 165.02

L,

e =% 88l o N mm?
3 25

[

T, =

=66.01N / mm?

Now, the twist 8 is computed by substituting the values of q; and g2 in equation (a)

20
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Module 7/Lesson 2

ie, 2GO =L[130x250.83x60x165.02]
15000
_ 1 X 22706.7 =1.824 x10 °radians/ mmlength
15000 83x1000

or 6 =1.04 degrees/m length

Example 7.6
A tubular section having three cells as shown in the figure is subjected to a torque of
113 kN-m. Determine the shear stresses developed in the walls of the section.

«—— 254 —><€«—— 254 —>
!
/ d. 10.8 a3 T
/ \,e) d, 0s | U6 |
AN 2 - 08 (3 g
0.6 1.3 1.0 l
qvl\
d, 0,
All dimensions in mm

Figure 7.15

Solution: Let (,,0,,0,,0,,0s,0s be the shear flows in the various walls of the tube as
shown in the figure. A, A,,and A, be the areas of the three cells.

SA = %(127)2 = 25322mm?®

A, = 254 x 254 = 64516mm’
A, =64516mm*
Now, From the figure,
0:1=02+ 04
02=0s+0s
0s=0Qs
orq, =7t =7,t, + 7,1,
0, =7,t, =750 + 755
s = 75t; = 7l

Where 7,,7,,75,7,,7s andz, are the Shear Stresses in the various walls of the tube.

1)

Now, The applied torque is

21
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Mt = 2A1Q1 + 2A2q2 + 2A3q3
= Z(Alrltl + AT, + Asfsta)

Module 7/Lesson 2

ie., 113x10° = 2[(253227, x 0.8)+ (645167, x 0.8)+ (64516 x 0.8)]

-7, +3.397(c, +7,)=3718

)

Now, considering the rotations of the cellsand S,,S,,S,,S,,S; and S as the length of cell

walls,

We have,

7,5, +71,5S, =2GOA
-7,5,+27,S, + 7.5, = 2GOA,
— 7.5, + 27,5, + 7,5, = 2GOA,
Here S, = (7 x127)=398mm
S,=5;=5,=S5, =5, =254mm
.. (3) can be written as

3987, + 2548, = 25322G0
— 2547, +2x 254x 1, + 2547, = 64516G0
2547, +2x 254 x 7, + 2547, = 64516G0

Now, Solving (1), (2) and (4) we get
t, = 40.4N / mm?

7, =55.2N /mm?

t, = 48.9N /mm?

t, =-12.7N /mm?

7, = 36.6N /mm?

22
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UNIVERSITY

SOLID MECHANICS SHORT QUESTIONS AND ANSWERS

UNIT - IV

1.)
Define thick cylinders.
Thick cylinder is cylinder whose wall thickness is greater than 1/20 times of its
internal diameter. ... Thin cylinder is cylinder whose wall thickness is lesser than 1/20
times of its internal diameter.

2.) What is lame's theory?Or Lame's theory
» Assumptions: « The material is homogeneous and isotropic. ¢ Plane sections of the
cylinder perpendicular to the longitudinal axis. remain plane under pressure. That is
longitudinal strain is the same at all points in the cylinder.

3.) Which ratio decides whether cylinder is thin or thick?
Let t denotes thickness and d denotes diameter of the cylinder. If ratio of t/d is less
than 1/20 than the cylinder is thin cylinder. And if ratio of t/d is greater than 1/20
than cylinder is thick cylinder

4.) What are thick cylinders?
Thick cylinder is cylinder whose wall thickness is greater than 1/20 times of its
internal diameter. ... Thin cylinder is cylinder whose wall thickness is lesser than 1/20
times of its internal diameter.

5.) What is hoop stress definition?
Hoop stress is the circumferential force per unit areas (Psi) in the pipe wall due to
internal pressure. It can be explained as the largest tensile stress in a supported pipe
carrying a fluid under pressure.

6.) What is the difference between thick and thin?
Density is the main difference between thick and thin hair. Thick hair has a higher
density, thin hair's density is lower. ... Those with more than 2,200 strands
have thicker hair, those with less have thinner hair.

7.) What is radial stress in thick cylinder?
The radial stress for a thick-walled cylinder is equal and opposite to the gauge
pressure on the inside surface, and zero on the outside surface. The
circumferential stress and longitudinal stresses are usually much larger for pressure
vessels, and so for thin-walled instances, radial stress is usually neglected.

8.) What is the difference between hoop stress and longitudinal stress?
Longitudinal stress is the stress in a pipe wall, acting along the longitudinal axis of
the pipe.lt is produced by the pressure of the fluid in the pipe. It is also called as Hoop
stress. Radial stress is stress towards or away from the central axis of a component
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9.) What is meant by tangential stress?
Definition of tangential stress. : a force acting in a generally horizontal direction
especially : a force that produces mountain folding and over thrusting.

10.) What is longitudinal stress in cylinder?
Longitudinal Stress Thin Walled Pressure Vessel: When the vessel has closed ends
the internal pressure acts on them to develop a force along the axis of the cylinder.
This is known as the axial or longitudinal stress and is usually less than the
hoop stress.

11. What is the normal stress?

A normal stress is a stress that occurs when a member is loaded by an axial force.
The value of the normal force for any prismatic section is simply the force divided by
the cross sectional area. A normal stress will occur when a member is placed in
tension or compression.

12.)) What is longitudinal tension?
elevation and lowering of the larynx.
The active longitudinal tension of the vocal folds is achieved through the contraction
of the vocalis muscle, whereas the passive longitudinal tension is achieved through
contraction of the cricothyroid muscle.

What is a tangential relationship?

tangential. Tangential describes something that's not part of the whole. If you make a
comment that is tangential to the story you're telling, it's a digression. The story could
still be understood without it. In geometry, a tangent is a line that touches a curve in one
spot but doesn't intersect it anywhere else.

13.) What is meant by tangential force?

Tangential force. (Mech.) a force which acts on a moving body in the direction of

a tangent to the path of the body, its effect being to increase or diminish the velocity; -
distinguished from a normal force, which acts at right angles to the tangent and
changes the direction of the motion without changing the velocity ..

14.) What is meant by radial stress?
Radial stress is stress towards or away from the central axis of a component. The
walls of pressure vessels generally undergo tri-axial loading. For cylindrical pressure
vessels, the normal loads on a wall element are the longitudinal stress, the
circumferential (hoop) stress and the radial stress.
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15.) What is meant by circumferential stress?
The stresses induced in the cylinder due to the circumferential failure is
called circumferential stress/ hoop stress. Hoop's stress in thin cylinders. In thin
cylinders, the pressure due to the fluid inside causes a bursting force on to the cylinder
walls due to which the stress are induced in the cylinder.

16.) What is torsional testing?
The purpose of a torsion test is to determine the behavior a material or test sample
exhibits when twisted or under torsional forces as a result of applied moments that
cause shear stress about the axis.

17.) What are the advantages of hollow shaft over solid shaft?
Hollow shafts are much lighter than solid shafts and can transmit same torque
like solid shafts of the same dimensions. More over less energy is necessary to
acceleration and deceleration of hollow shafts. Therefore hollow shafts have great
potential for use in power transmission in automotive industry

18.) What is shear and torsion?
In shear force forces are parallel and in opposite direction and causes shear force
before brakedown. Eg ... stress in material while performing shear stress test on UTM.
In case of torsion force acting in tangential direction and causes twisting moment.

19.) What is torsional shear stress?
Torsional shear stress or Torsional stress is the shear stress produced in the shaft
due to the twisting. This twisting in the shaft is caused by the couple acting on it.

20.) What is the theory of torsion?
In solid mechanics, torsion is the twisting of an object due to an applied torque,
therefore is expressed in N. ... The theory of Torsion is based on the following
Assumptions : The material in the shaft is uniform throughout. The twist along the shaft
is uniform. The shaft is of uniform circular cross section throughout.

21.) What is difference between torque and torsion?
Torque and torsion are both related to turning effects experienced by a body. The
main difference between torque and torsion is that torque describes something that
is capable of producing an angular acceleration, whereas torsion describes the twist
formed in a body due to a torque.
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SOLID MECHANICS SHORT QUESTIONS AND ANSWERS

UNIT - IV
1.)
Define thick cylinders.
Thick cylinder is cylinder whose wall thickness is greater than 1/20 times of its
internal diameter. ... Thin cylinder is cylinder whose wall thickness is lesser than 1/20
times of its internal diameter.

2.) What is lame's theory?Or Lame's theory
» Assumptions: « The material is homogeneous and isotropic. ¢ Plane sections of the
cylinder perpendicular to the longitudinal axis. remain plane under pressure. That is
longitudinal strain is the same at all points in the cylinder.

3.) Which ratio decides whether cylinder is thin or thick?
Let t denotes thickness and d denotes diameter of the cylinder. If ratio of t/d is less
than 1/20 than the cylinder is thin cylinder. And if ratio of t/d is greater than 1/20
than cylinder is thick cylinder

4.) What are thick cylinders?
Thick cylinder is cylinder whose wall thickness is greater than 1/20 times of its
internal diameter. ... Thin cylinder is cylinder whose wall thickness is lesser than 1/20
times of its internal diameter.

5.) What is hoop stress definition?
Hoop stress is the circumferential force per unit areas (Psi) in the pipe wall due to
internal pressure. It can be explained as the largest tensile stress in a supported pipe
carrying a fluid under pressure.

6.) What is the difference between thick and thin?
Density is the main difference between thick and thin hair. Thick hair has a higher
density, thin hair's density is lower. ... Those with more than 2,200 strands
have thicker hair, those with less have thinner hair.

7.) What is radial stress in thick cylinder?
The radial stress for a thick-walled cylinder is equal and opposite to the gauge
pressure on the inside surface, and zero on the outside surface. The
circumferential stress and longitudinal stresses are usually much larger for pressure
vessels, and so for thin-walled instances, radial stress is usually neglected.

8.) What is the difference between hoop stress and longitudinal stress?
Longitudinal stress is the stress in a pipe wall, acting along the longitudinal axis of
the pipe.lt is produced by the pressure of the fluid in the pipe. It is also called as Hoop
stress. Radial stress is stress towards or away from the central axis of a component
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9.) What is meant by tangential stress?
Definition of tangential stress. : a force acting in a generally horizontal direction
especially : a force that produces mountain folding and over thrusting.

10)) What is longitudinal stress in cylinder?
Longitudinal Stress Thin Walled Pressure Vessel: When the vessel has closed ends
the internal pressure acts on them to develop a force along the axis of the cylinder.
This is known as the axial or longitudinal stress and is usually less than the
hoop stress.

11. What is the normal stress?

A normal stress is a stress that occurs when a member is loaded by an axial force.
The value of the normal force for any prismatic section is simply the force divided by
the cross sectional area. A normal stress will occur when a member is placed in
tension or compression.

12)) What is longitudinal tension?
elevation and lowering of the larynx.
The active longitudinal tension of the vocal folds is achieved through the contraction
of the vocalis muscle, whereas the passive longitudinal tension is achieved through
contraction of the cricothyroid muscle.

What is a tangential relationship?

tangential. Tangential describes something that's not part of the whole. If you make a
comment that is tangential to the story you're telling, it's a digression. The story could
still be understood without it. In geometry, a tangent is a line that touches a curve in one
spot but doesn't intersect it anywhere else.

13.) What is meant by tangential force?

Tangential force. (Mech.) a force which acts on a moving body in the direction of

a tangent to the path of the body, its effect being to increase or diminish the velocity; -
distinguished from a normal force, which acts at right angles to the tangent and
changes the direction of the motion without changing the velocity ..

14)) What is meant by radial stress?
Radial stress is stress towards or away from the central axis of a component. The
walls of pressure vessels generally undergo tri-axial loading. For cylindrical pressure
vessels, the normal loads on a wall element are the longitudinal stress, the
circumferential (hoop) stress and the radial stress.
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15) What is meant by circumferential stress?
The stresses induced in the cylinder due to the circumferential failure is
called circumferential stress/ hoop stress. Hoop's stress in thin cylinders. In thin
cylinders, the pressure due to the fluid inside causes a bursting force on to the cylinder
walls due to which the stress are induced in the cylinder.

16.) What is torsional testing?
The purpose of atorsion testis to determine the behavior a material or test sample
exhibits when twisted or under torsional forces as a result of applied moments that
cause shear stress about the axis.

17.)What are the advantages of hollow shaft over solid shaft?
Hollow shafts are much lighter than solid shafts and can transmit same torque
like solid shafts of the same dimensions. More over less energy is necessary to
acceleration and deceleration of hollow shafts. Therefore hollow shafts have great
potential for use in power transmission in automotive industry

18.)What is shear and torsion?
In shear force forces are parallel and in opposite direction and causes shear force
before brakedown. Eg ... stress in material while performing shear stress test on UTM.
In case of torsion force acting in tangential direction and causes twisting moment.

19) What is torsional shear stress?
Torsional shear stress or Torsional stress is the shear stress produced in the shaft
due to the twisting. This twisting in the shaft is caused by the couple acting on it.

20.) What is the theory of torsion?
In solid mechanics, torsion is the twisting of an object due to an applied torque,
therefore is expressed in N. ... The theory of Torsion is based on the following
Assumptions : The material in the shaft is uniform throughout. The twist along the shaft
is uniform. The shatft is of uniform circular cross section throughout.

21.) What is difference between torque and torsion?
Torque and torsion are both related to turning effects experienced by a body. The
main difference between torque and torsion is that torque describes something that
is capable of producing an angular acceleration, whereas torsion describes the twist
formed in a body due to a torque.
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SOLID MECHANICS SHORT QUESTIONS AND ANSWERS
UNIT-V

1.) What is the energy method ?
Rayleigh's method is based on the principle of conservation of energy. ... The kinetic energy is
stored in the mass and is proportional to the square of the velocity. The
potential energy includes strain energy that is proportional to elastic deformations and the work
done by the applied forces.

2.) What is the difference between elasticity and plasticity?
Elasticity is defined as the property which enables a material to get back to (or recover) its
original shape, after the removal of applied force. For example Plasticity is defined as the
property which enables a material to be deformed continuously and permanently without rupture
during the application of force.

3.) What does stress concentration mean?
A stress concentration (often called stress raisers or stress risers) is a location in an object
where stress is concentrated. ... A material can fail, via a propagating crack, when a
concentrated stress exceeds the material's theoretical cohesive strength.

4.) Define potential energy methods
Potential energy is that energy which an object has because of its position. It is
called potential energy because it has the potential to be converted into other forms
of energy, such as kinetic energy.

5.) Define von Mises yield criterion.

The von Mises yield criterion (also known as the maximum distortion energy
criterion) suggests that yielding of a ductile material begins when the second
deviatoric stress invariant reaches a critical value. It is part of plasticity theory that
applies best to ductile materials, such as some metals.

6.) What is the difference between von Mises and Tresca?
Mises is smooth, while Tresca has corners. At the crystal level (single grain) yielding
does associate with dislocation movement on slip planes. This is caused by shear
stress on the slip system (resolved shear stress).

7.) Why von Mises stress is used?
Von Mises stress is a value used to determine if a given material will yield or fracture.
It is mostly used for ductile materials, such as metals.

8.) Is von Mises or Tresca more conservative?
The Tresca theory is more conservative than the von Mises theory. It predicts a
narrower elastic region. The Tresca criterion can be safer from the design point of view,
but it could lead the engineer to take unnecessary measures to prevent an unlikely
failure. ... Von Mises versus Tresca criteria in a 2D system.
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9.) What is the difference between von Mises stress and principal stress?
Von Mises is a theoretical measure of stress used to estimate yield failure criteria in
ductile materials and is also popular in fatigue strength calculations (where it is signed
positive or negative according to the dominant Principal stress), whilst Principal
stress is a more "real" and directly measurable stress

10.) Define theory of strength.

Definition. In mechanics of materials, the strength of a material is its ability to
withstand an applied load without failure or plastic deformation. The field

of strength of materials deals with forces and deformations that result from their
acting on a material.

11.) What is Mohr's strength theory of soil?
The Mohr theory is virtually an empirical theory of yield which accounts for the
behavior of permanently deformed materials. As portrayed on a Mohr stress diagram
the theory assumes a functional relation between mean stress and maximum shear
stress on the plane of failure.

12)) What are the different theories of failure?
There are five theories of failure: Shear strain energy theory. Total strain
energy theory. Maximum shear stress theory

13)) What is Rankine theory of failure?

Rankine theory. Rankine's Theory assumes that failure will occur when the
maximum principal stress at any point reaches a value equal to the tensile stress
in a simple tension specimen at failure. ... Rankine's theory is satisfactory for
brittle materials, and not applicable to ductile materials.

14.) What is the maximum shear stress theory?
The Maximum Shear Stress theory states that failure occurs when the maximum
shear stress from a combination of principal stresses equals or exceeds the value
obtained for the shear stress at yielding in the uniaxial tensile test.

15.) What is principal stress theory?
Maximum principle stress theory or normal stress theory says that, yielding occurs at
a point in a body, when principle stress (maximum normal stress) in a biaxial system
reaches limiting yield value of that material under simple tension test. ... That's why
this theory preferred for brittle materials.

16.) What is distortion energy theory?
The distortion energy theory is a failure theory that is used to predict the failure of a
tough material. It is based on the assumption that the proportion of energy that causes
a component to change shape is a crucial factor in relation to the Material stress. An
equivalent stress
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