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STUDY MATERIAL  
SOLID MECHANICS UNIT- I SHORT QUESTION AND ANSWERS 

 
What is stress tensor mean? 
The tensor consists of nine components that completely define the state of stress at a point inside a 
material in the deformed state, placement, or configuration. The tensor relates a unit-length direction 
vector n to the stress vector T across an imaginary surface perpendicular to n:  The unit vector is 
dimensionless 

 
What is stress tensor mean? 
The tensor consists of nine components that completely define the state of stress at a point inside a material 
in the deformed state, placement, or configuration. The tensor relates a unit-length direction vector n to the 
stress vector T across an imaginary surface perpendicular to n: The unit vector is dimensionless. 
 
 

What is stress and strain tensor? 
Stress Tensor:- Stress is defined as force per unit area. If we take a cube of material and subject it 
to an arbitrary load we can measure the stress on it in various directions   These measurements will 

form a second rank tensor; the stress tensor. 
 
Define strain energy 
Energy stored in an elastic body under loading. "ligaments and tendons are elastic structures that can 
store strain energy, like a spring" 
 
Definition of 'plane stress' 
Plane stress exists when one of the three principal stresses is zero. In very flat or thin objects, 
the stresses are negligible in the smallest dimension so plane stress can be said to apply. Plane 
stress is a two-dimensional state of stress in which all stress is applied in a single plane. 
 
 

What is normal stress? 
A normal stress is a stress that occurs when a member is loaded by an axial force. The value of 
the normal force for any prismatic section is simply the force divided by the cross sectional area. 
A normal stress will occur when a member is placed in tension or compression. 
 

What is major principal stress? 
Principal Stresses. It is defined as the normal stress calculated at an angle when shear stress is 
considered as zero. The maximum value of normal stress is known as major principal stress and 
minimum value of normal stress is known as minor principal stress. 
 
What is stress in material? 
In continuum mechanics, stress is a physical quantity that expresses the internal forces that 
neighboring particles of a continuous material exert on each other, while strain is the measure of the 
deformation of the material which is not a physical quantity. 
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What is Mohr's circle used for? 
The Mohr circle is used to find the stress components and i.e., coordinates of any point on 
the circle, acting on any other plane passing through making an angle with the plane. For this, two 
approaches can be used: the double angle, and the Pole or origin of planes. 
 
 

What is a bending stress? 
Bending stress is the normal stress that is induced at a point in a body subjected to loads that 
cause it to bend. When a load is applied perpendicular to the length of a beam (with two supports on 
each end), bending moments are induced in the beam. The bottom fibers of the beam undergo a 
normal tensile stress. 
 
What are the 3 principal stresses? 
These three principal stress can be found by solving the following cubic equation, This equation will 
give three roots, which will be the three principal stresses for the given three normal stresses (σx, 
σy and σz) and the three shear stresses (τxy, τyzand τzx). 
 

What are different types of stresses? 
There are six types of stress: compression, tension, shear, bending, torsion, and fatigue. Each of 
these stresses affects an object in different ways and is caused by the internal forces acting on the 
object. 
 

Why is the strain tensor symmetric? 
It is defined to be symmetric, so that it behaves like a tensor. ... The stress tensor, which is its 
energy conjugate, is symmetric, and hence the skew-symmetric part has no contribution 
towards strain energy 
 

Is the stress tensor always symmetric? 
The components of the Cauchy stress tensor at every point in a material satisfy the equilibrium 
equations (Cauchy's equations of motion for zero acceleration). Moreover, the principle of 
conservation of angular momentum implies that the stress tensor is symmetric." 
 

 
 

What is stress tensor in engineering? 
The Stress Tensor 
Stress is defined as force per unit area. If we take a cube of material and subject it to an arbitrary 
load we can measure the stress on it in various directions. These measurements will form a second 
rank tensor; the stress tensor. 
 
 

Define Cauchy's relation  
Cauchy's equation is an empirical relationship between the refractive index and wavelength of light 
for a particular transparent material. It is named for the mathematician Augustin-Louis Cauchy, 
who defined it in 1836 
 

Define Compatibility 
Compatibility conditions are mathematical conditions that determine whether a particular deformation will 
leave a body in a compatible state. In the context of infinitesimal strain theory, these conditions are 
equivalent to stating that the displacements in a body can be obtained by integrating the strains. 
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What is meant by strain compatibility? 
In the two-dimensional case, there are three strain-displacement relations but only two displacement 
components. This implies that the strains are not independent but are related in some way. The 
relations between the strains are called compatibility conditions.  
 
 

What do you mean by stress function? 
The Airy stress function: Scalar potential function that can be used to find the stress. Satisfies   
equilibrium in the absence of body forces. Only for two-dimensional problems (plane stress/plane 
strain) 
 

What is being compatible in a relationship? 
Love, on the other hand, is a deeper emotion that you feel for another person. ... It also has an 
emotional and sexual nature unlike compatibility, which doesn't always." Basically, being in 
a compatible relationship means that you work well together, enjoy each other's company and have 
a good time 

 
 

What is compatibility equation? 
Compatibility equations are those additional equations which can be made considering equilibrium 
of the structure, to solve statically indeterminate structures 
 

Dr.M.R.RAJAMANICKAM,   
                     ASSOCIATE PROFESSOR, 
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SOLID MECHANICS UNIT-II 
Constitutive equations: Generalized Hooke’s Law, Linear elasticity, Material 
Symmetry 
 
What is meant by constitutive matrix? 
In physics and engineering, a constitutive equation or constitutive relation is a 
relation between two physical quantities (especially kinetic quantities as related to 
kinematic quantities) that is specific to a material or substance, and approximates the 
response of that material to external stimuli. 
 

What is a mechanical constitutive equation? 
(Mechanical engineering: Mechanics and dynamics) A constitutive equation is 
anequation that describes the relationship between two physical quantities, for example 
between the stress put on a material and the strain produced on it. The constitutive 
equation for most metals is based on Hooke's law. 
 
What is constitutive modeling? 
Constitutive modelling is the mathematical description of how materials respond to 
various loadings. This is the most intensely researched field within solid mechanics 
because of its complexity and the importance of accurate constitutive models for 
practical engineering problems. 
 
What is compliance tensor? 
The stiffness and compliance tensors 
For hyper elastic materials, the stress and strain of a linear elastic material are such 
that one can be derived from a stored energy potential function of the other (also called 
a strain energy density function) 
 
 

Is Hooke's law a constitutive equation? 
Definition of 'constitutive equation' 
A constitutive equation is an equation that describes the relationship between two 
physical quantities, for example between the stress put on a material and the strain 
produced on it. The constitutive equation for most metals is based on Hooke's law. 
 
 

What is compatibility equation? 
Compatibility equations are those additional equations which can be made 
considering equilibrium of the structure, to solve statically indeterminate structures. 
Take the case of a cantilever propped at its free end. ... So, we need 1 extra 
compatibility equation, in addition to the three equilibrium equations. 
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What is monoclinic material? 
Monoclinic materials: 
As there is a single plane of material property symmetry, shear stresses from the 
planes in which one of the axis is the perpendicular axis of the plane of material 
symmetry (i.e.; 2-3 and 3-1 planes) will contribute only to the shear strains in those 
planes. 
 
 

 
What is transversely isotropic material? 
A transversely isotropic material is one with physical properties that are symmetric 
about an axis that is normal to a plane of isotropy. This transverse plane has infinite 
planes of symmetry and thus, within this plane, the material properties are the same in 
all directions. 
 
 

What does Hyper elastic mean? 
A hyper elastic or green elastic material is a type of constitutive model for ideally 
elastic material for which the stress–strain relationship derives from a strain energy 
density function. 
 
 

What is tensor in SOM? 
Tensors are referred to by their "rank" which is a description of the tensor's dimension. 
A zero rank tensor is a scalar, a first rank tensor is a vector; a one-dimensional array 
of numbers. A third rank tensor would look like a three-dimensional matrix; a cube of 
numbers 

 
 

What is the difference between orthotropic and anisotropic? 
Orthotropic materials are a subset of anisotropic materials; their properties depend on 
the direction in which they are measured. Orthotropic materials have three planes/axes 
of symmetry. An isotropic material, in contrast, has the same properties in every 
direction. 
 
 

How many independent elastic constants are there for an isotropic material? 
There are 81 independent elastic constants for generally anisotropic material and 
two for an isotropic material. Let us summarize the reduction of elastic constants 
from generally anisotropic to isotropic material. For a generally anisotropic material 
there are 81 independent elastic constants. 
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What is strain compatibility method? 
A concrete stress block is used with a strain compatibility method to predict flexural 
and axial strengths of concrete-filled tube columns. The accurate stress-strain relations 
of the confined concrete and steel should be used to get an exact solution while using 
the strain compatibility method. 
 
 

What is compatibility condition? 
Compatibility conditions are mathematical conditions that determine whether a 
particular deformation will leave a body in a compatible state. In the context of 
infinitesimal strain theory, these conditions are equivalent to stating that the 
displacements in a body can be obtained by integrating the strains. 
 

Are composites homogeneous? 
 A homogeneous material is one where properties are uniform throughout, i.e. they do 
not depend on position in body. An isotropic material is one where properties are 
direction independent. Composites are inhomogeneous (or heterogeneous) as well as 
non-isotropic in nature. 
 
 

Are composites isotropic or anisotropic? 
Anisotropic materials have different material properties in all directions at a point in the 
body. Bulk materials, such as metals and polymers, are normally treated as 
isotropic materials, while composites are treated as anisotropic. Composites are a 
subclass of anisotropic materials that are classified as orthotropic. 
 

 

What is isotropic material? 
Isotropic material means a material having identical values of a property in all 
directions. Glass and metals are examples of isotropic materials. Anisotropic 
material's properties such as Young's Modulus, change with direction along the object. 
Common examples of anisotropic materials are wood and composites. 
 



Chapter 9

CONSTITUTIVE RELATIONS
FOR LINEAR ELASTIC SOLIDS

Figure 9.1: Hooke memorial window, St. Helen’s, Bishopsgate, City of London
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9.1 Mechanical Constitutive Equations

Recall that in Chapters 2, 3 and 8 we briefly introduced the concept of a constitutive equation,
which generally relates kinetic variables to kinematic variables in the application of interest. With
respect to the application of the analysis of mechanical deformations in solids, the kinetic variable
is the stress tensor, σ, whereas the kinematic variables are the displacements ux, uy, uz, and the
strain tensor, ε which includes derivatives (sometimes called gradients) of the displacements. Since
it is generally observed that rigid body displacements do not induce stresses, the displacement field
ux, uy, uz, will not enter into a mechanical constitutive equation. Thus, the constitutive equations
will in general relate stress, σ, to strains, ε, and temperature T . In 1660, Robert Hooke observed
that for a broad class of solid materials called linear elastic (or Hookean), this relationship may be
described by a linear relationship. Hooke originally considered the test of a uniaxial body with a
force (stress) applied only in one direction and measured the corresponding elongation (strain) to
obtain:

y

x

σ yy

σ yy

σ yy

yyε 

E
A=cross-sectional
area

yy yyEε =

Figure 9.2: Stress-Strain Curve for Linear Elastic Material

For a general three-dimensional state of stress, there are 6 independent stresses and 6 independent
strains; therefore, the linear relationship between stress and strain can be written in matrix form as:

σ = [C] ε (9.1)

where [C] is a 6 × 6 matrix of elastic constants that must be determined from experiments. In
expanded form, these 6 equations become:

σxx = C11εxx + C12εyy + C13εzz + C14εyz + C15εzx + C16εxy

σyy = C21εxx + C22εyy + C23εzz + C24εyz + C25εzx + C26εxy

σzz = C31εxx + C32εyy + C33εzz + C34εyz + C35εzx + C36εxy

σyz = C41εxx + C42εyy + C43εzz + C44εyz + C45εzx + C46εxy (9.2)
σzx = C51εxx + C52εyy + C53εzz + C54εyz + C55εzx + C56εxy

σxy = C61εxx + C62εyy + C63εzz + C64εyz + C65εzx + C66εxy

It is interesting to note that Robert Hooke first proposed the above “law” publicly in an anagram
at Hampton Court (1676) given by the group of letters:

ceiiinosssttuv.
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In 1678 he explained the anagram to be

“Ut tensio sic vis,”

which is Latin meaning “as the tension so the displacement” or in English “the force is proportional
to the displacement.” Students may recall that during this time period, science and scientific writing
was criticized and hence Hooke thought it necessary to discretely disclose his scientific finding with
an anagram.

Note that in the previous chapters stress and strain were represented as (3 × 3) matrices. It
is convenient, however, here to represent them as (6 × 1) column vectors since they have only
6 independent components (stress due to conservation of angular momentum and strain by its
definition). We then write

{σ} =




σxx

σyy

σzz

σyz

σzx

σxy




, {ε} =




εxx

εyy

εzz

εyz

εzx

εxy




By adopting this representation for σ and ε, their linear relationship (9.2) can be easily written
in matrix form:




σxx

σyy

σzz

σyz

σzx

σxy




=




C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66







εxx

εyy

εzz

εyz

εzx

εxy




(9.3)

• If a material is homogeneous then the constants (Cij , i = 1, ..., 6 and j = 1, ..., 6) are all
independent of x, y, z for any time, t.

• If a material is isotropic, then for a given material point, Cij are independent of the orientation
of the coordinate system (i.e., the material properties are the same in all directions).

• If a material is orthotropic, then for a given material point, Cij can be defined in terms of
properties in three orthogonal coordinate directions.

• If a material is anisotropic, then for a given material point, Cij are different for all orientations
of the coordinate system.

In order to determine the material constants in equation (9.3), consider a uniaxial tensile test
using a test specimen of linear elastic isotropic material with cross-sectional area A and subjected
to a uniaxilly applied load F in the axial (y) direction as shown below. The cross-section may be
any shape but generally a rectangular or cylindrical shape is chosen. For a rectangular specimen,
assume a width W and thickness t so that the cross-sectional area is A = Wt. Assume a small gauge
length of L for which the axial deformation will be measured during the load application.

During the uniaxial tensile test, we observe that the gauge length changes from L to L∗

and the gauge width decreases from W to W ∗. We also observe a decrease (contraction) in the z
dimension. We further observe no change in angular orientation of the vertical or horizontal elements
and conclude that for uniaxial loading, no shear strains are produced. This leads us to postulate
the following strain state: εxx, εyy, εzz �= 0, εxy, εyz, εxz = 0. The axial stress and strain in the axial
(y) direction are defined to be
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Figure 9.3: Experimental Measurement of Axial and Transverse Deformation

σyy =
F

A

εyy =
∆L

L
=

(L∗ − L)
L

The strain the in the transverse (x) direction due to the axial load is

εxx =
∆W

W
=

(W ∗ − W )
W

If we plot axial stress vs. axial strain and transverse strain vs. axial strain, we obtain the
following two plots:

σyy = Eεyy εxx = −νεyy

εxx = ∆W
W

1

E

−ν

σyy = F
A

εyy = ∆L
L

εyy
1

Figure 9.4: Experimental Results for Axial Stress vs. Axial Strain & Transverse Strain vs. Axial
Strain

From these two plots, we can write σyy = Eεyy and εxx = −νεyy for the uniaxial tension test.
Consequently, we may define the following two material constants from this single uniaxial test:

• E = slope of the uniaxial σyy vs. εyy curve = a material constant called Young’s modulus
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• ν = − εxx

εyy
= negative ratio of the strain normal to the direction of loading over the strain in

the loading direction = a material constant called Poisson’s ratio

If the transverse strain were measured in the z direction, we would find the same ratio for transverse
to axial strain: ν = − εzz

εyy
.

Combining these equations, we can write the two transverse strains entirely in terms of the axial
stress σyy: εxx = −νεyy = −ν

(σyy

E

)
and εzz = −νεyy = −ν

(σyy

E

)
.

In order to obtain a complete description of three-dimensional constitutive behavior, consider
a test where we apply normal tractions (stresses) in the x, y and z directions simultaneously and
measure the strain only in the x direction. For a linear material response, we may use the principle
of linear superposition and consider three separate cases as shown below:

= + +
σxx

σxx σxx σxx

σyy

σyy

σyy

σyy

σzz

σzz

σzz

σzz

Figure 9.5: Experimental Test with all Components of Normal Stresses Applied

εxx = normal strain in x direction due to σxx

+ normal strain in x direction due to σyy

+ normal strain in x direction due to σzz

=
1
E

σxx − ν

E
σyy − ν

E
σzz

or

εxx =
1
E

[σxx − ν(σyy + σzz)] (9.4)

The stress in the x direction increases the strain in the x direction while the transverse stresses
causes a contraction (decrease in εxx).

Doing similar experiments in the y and z directions gives:

εyy =
1
E

[σyy − ν(σxx + σzz)] (9.5)

εzz =
1
E

[σzz − ν(σxx + σyy)]

Experiments with shear tractions will show that a shear stress σxy in the x-y plane produces only
shear strain εxy in the x-y plane for a state of pure shear loading (i.e., no normal strain is observed
so that the shear strain is uncoupled from the normal strain).1 Thus, we obtain the following

1Keep in mind that even for the case of pure shear, if one calculates shear stresses (or strains) at some angle θ
from the x-axis (Mohr’s circle), one may obtain non-zero normal stresses (or strains) for the off-axis planes.
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experimental observations for the shear strains:

εxy =
1 + ν

E
σxy

εxz =
1 + ν

E
σxz (9.6)

εyz =
1 + ν

E
σyz

Combining equations (9.4), (9.5) and (9.6), Hooke’s law for a linear elastic isotropic solid with a
three-dimensional stress state becomes:

Hooke’s Law for a Linear Elastic Isotropic Solid

εxx =
1
E

[σxx − ν(σyy + σzz)]

εyy =
1
E

[σyy − ν(σxx + σzz)]

εzz =
1
E

[σzz − ν(σxx + σyy)]

εxy =
1 + ν

E
σxy (9.7)

εxz =
1 + ν

E
σxz

εyz =
1 + ν

E
σyz

where E = Young’s modulus and ν = Poisson’s ratio.
It should be noted that in materials that undergo permanent deformation, the above model is

not accurate (such as metals beyond their yield point, or polymers that flow). A typical uniaxial
stress-strain curve for a ductile metal is shown below:

σxx

εxx

E

yield stress

ultimate stress

failure stress

Figure 9.6: Typical Stress-Strain Curve for Ductile Metal

An algebraic inversion of the strain-stress relationship (9.7) provides the following relationship
of stress in terms of strain:
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{σ} =
E

1 + ν




1−ν
1−2ν

ν
1−2ν

ν
1−2ν 0 0 0

ν
1−2ν

1−ν
1−2ν

ν
1−2ν 0 0 0

ν
1−2ν

ν
1−2ν

1−ν
1−2ν 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1







εxx

εyy

εzz

εyz

εzx

εxy




(9.8)

or,

Hooke’s Law for a Linear Elastic Isotropic Solid

{σ} =




σxx

σyy

σzz

σxy

σxz

σyz




=




E
(1+ν)(1−2ν) [(1 − ν)εxx + νεyy + νεzz]

E
(1+ν)(1−2ν) [νεxx + (1 − ν)εyy − νεzz]

E
(1+ν)(1−2ν) [νεxx + νεyy + (1 − ν)εzz]

E
1+ν εxy
E

1+ν εxz
E

1+ν εyz




(9.9)

where E = Young’s modulus and ν = Poisson’s ratio.
The term E

(1+ν) ≡ 2G defines a shear modulus, G, relating shear strain and shear stress (similar
to Young’s modulus, E, for extensional strain). Thus, the shear modulus is given by:

G =
E

2(1 + ν)
(9.10)

Note that the shear strain εxy is related to engineering shear strain γxy by γxy = 2εxy =
2( 1+ν

E )σxy = σxy

G so that σxy = Gγxy = 2Gεxy.

σxy

γxy

σxy = Gγxy = G2εxy

G = E
2(1+ν)

G = shear modulus

Figure 9.7: Experimental Results for Shear Stress vs. Engineering Shear Strain

Note that G is defined in terms of E and ν and consequently G is not a new material property.
Thus, for a homogeneous linear elastic isotropic solid, we conclude that only two material properties
(Young’s modulus, E, and Poisson’s ratio, ν) are required to completely define the three-dimensional
constitutive behavior.
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The stress-strain equations may also be written in terms of shear modulus to obtain:

σxx =
E

(1 + ν)(1 − 2ν)
[(1 − ν)εxx + νεyy + νεzz] =

2G

1 − 2ν
[(1 − ν) εxx + νεyy + νεzz]

σyy =
E

(1 + ν)(1 − 2ν)
[νεxx + (1 − ν)εyy − νεzz] =

2G

1 − 2ν
[νεxx + (1 − ν) εyy + νεzz]

σzz =
E

(1 + ν)(1 − 2ν)
[νεxx + νεyy + (1 − ν)εzz] =

2G

1 − 2ν
[νεxx + νεyy + (1 − ν) εzz]

σyz =
E

1 + ν
εyz = 2Gεyz (9.11)

σzx =
E

1 + ν
εzx = 2Gεzx

σxy =
E

1 + ν
εxy = 2Gεxy

Side Note: If the definition of εxx and εzz from ν = − εxx

εyy
= − εzz

εyy
is substituted into equation (9.9),

we obtain for the uniaxial bar extension experiment described previously:

σxx =
E

(1 + ν)(1 − 2ν)
[(1 − ν)(−νεyy) + νεyy + ν(−ν)εyy] = 0

σyy =
E

(1 + ν)(1 − 2ν)
[
−ν2εyy + (1 − ν)εyy − ν2εyy

]
= Eεyy

σzz = 0
σxy = σxz = σyz = 0

This result is consistent with all observations made regarding the nature of stress for the uniaxial
test with an applied stress of σyy.

9.2 Constitutive Equations with Thermal Strain

Experimentally, we observe for a linear isotropic metal that a temperature increase, ∆T , produces a
uniform expansion but no shear and the expansion is proportional to a material constant α (coeffi-
cient of thermal expansion). The additional strain due to heating is thus: εxx = εyy = εzz = α∆T .
Thus, the constitutive equation for a linear elastic isotropic solid (9.7) may be modified by the
addition of the thermal strain to the normal strain components:

εxx =
1
E

[σxx − ν(σyy + σzz)] + α∆T

εyy =
1
E

[σyy − ν(σxx + σzz)] + α∆T

εzz =
1
E

[σzz − ν(σxx + σyy)] + α∆T

εxy = (
1 + ν

E
)σxy (9.12)

εxz = (
1 + ν

E
)σxz

εyz = (
1 + ν

E
)σyz
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These equations can be inverted to obtain stress in terms of strain:

σxx =
E

(1 + ν)(1 − 2ν)
[(1 − ν)εxx + νεyy + νεzz] −

Eα∆T

(1 − 2ν)

σyy =
E

(1 + ν)(1 − 2ν)
[νεxx + (1 − ν)εyy + νεzz] −

Eα∆T

(1 − 2ν)

σzz =
E

(1 + ν)(1 − 2ν)
[νεxx + νεyy + (1 − ν)εzz] −

Eα∆T

(1 − 2ν)

σxy =
E

2(1 + ν)
εxy (9.13)

σxz =
E

2(1 + ν)
εxz

σyz =
E

2(1 + ν)
εyz

In the above, ∆T = ∆T (x, y, z ) and represents the increase in temperature from a “reference”
temperature where the thermal strain is zero. It should be noted that the first term in the extensional
strain terms above (the [ ] term) is due to elastic behavior of the material (i.e., it has Young’s modulus
in it). The second part is due to thermal strain. We can separate the total strain into elastic and
thermal strains:

εtotal
xx = εelastic

xx + εthermal

εtotal
yy = εelastic

yy + εthermal (9.14)

εtotal
zz = εelastic

zz + εthermal

The elastic (also called mechanical) and thermal terms are given by:

εelastic
xx =

1
E

[σxx − ν(σyy + σzz)]

εelastic
yy =

1
E

[σyy − ν(σxx + σzz)] (9.15)

εelastic
zz =

1
E

[σzz − ν(σxx + σyy)]

εthermal = α∆T

The terms εtotal
xx , εtotal

yy , εtotal
zz represent the total strain as measured or observed, and are thus equal

to their deformation gradient definitions, i.e., for small strain,

εtotal
xx = εxx =

∂ux

∂x

εtotal
yy = εyy =

∂uy

∂y
(9.16)

εtotal
zz = εzz =

∂uz

∂z

We state once again that shear strains have no thermal component for an isotropic material. Exam-
ples of problems involving thermal strain will be considered in Chapter 10.

Some typical values of material properties for isotropic metals are provided in the table below.
Note that the values of E (Young’s modulus) are typically in the million psi or GPa range for
engineering materials, while the values of ν are between zero and 0.5 (0 < ν < 0.5). The yield
strength represents the stress level at which the metal yields (becomes inelastic). For ductile metals,



220 CHAPTER 9. CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS

the ultimate tensile strength is typically 10 to 50% higher than the yield strength. It should be
noted that material properties for commonly used metals must satisfy specifications established by
regulatory agencies. Values in Tables 9.1 and 9.2 that are not provided are unknown for purposes
of presentation herein and they should not to be interpreted as zero. The reader may with to consult
other sources for the omitted values.

For non-metals, properties may vary significantly depending upon many variables (for example,
wood has a Young’s modulus varying from 0.1×106 psi to 2×106 psi depending upon the tree species
and direction of wood grain; the modulus of concrete will depend on the concrete/aggregate ratio
and curing process). Examples of non-metals commonly used are concrete (ultimate compressive
strength of 5 ksi but zero tensile strength; with an elastic modulus in compression of 3 × 106 psi)
and Douglas fir (parallel to grain, ultimate compressive strength of 7 ksi; with an elastic modulus
of 1.6 × 106 psi).

Material Density(
lb
in3

) Young’s
Modulus
(106 psi)

Poisson’s
Ratio

Yield
Strength
(ksi)

Ultimate
Tensile
Strength
(ksi)

Coefficient of
Thermal
Expansion(

10−6

◦F

)

Tension Shear
Aluminum
2024-T4 0.100 10.5 0.33 40 62 12.9 (200 ◦F)
6061-T6 0.098 9.9 0.33 36 21 42 13.0 (70-200 ◦F)
Steel
Structural (A36) 0.284 30.0 0.29 36 21 65 6.5
AISI 1025 0.284 29.0 0.32 36 55 6.8 (70-200 ◦F)
5Cr-Mo-V 0.281 30.0 0.36 200 240 7.1 (80-800 ◦F)
Copper
G3-Heat Treated 0.272 16.0 60 110 9.0 (70-570 ◦F)
Titanium
Ti-5Al-2.5Sn 0.162 15.5 110 115 5.2 (200-400 ◦F)
Ti-6M-4V 0.160 16.0 0.34 120 72 130 4.6 (200-400 ◦F)

Table 9.1: Structural Material Properties for Selected Metals (US Customary Units)

Example 9-1

Given:

[σ] =




−y Mz

Izz
0 0

0 0 0
0 0 0


 where Mz and Izz are constants

Required :

(a) Verify that the stress tensor satisfies the Conservation of Linear Momentum.

(b) Determine the components of the infinitesimal strain tensor, ε.

(c) Determine the components of the displacement, ux, uy, and uz.

(d) Describe the displacement and physical problem described by these equations. Use as reference
the figure below.
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Material Density(
Mg
m3

) Young’s
Modulus
(GPa)

Poisson’s
Ratio

Yield
Strength
(MPa)

Ultimate
Tensile
Strength
(MPa)

Coefficient of
Thermal
Expansion(

10−6

◦C

)

Tension Shear
Aluminum
2024-T6 2.79 73.1 0.35 414 469 23
6061-T6 2.71 68.9 0.33 245 145 290 24
Steel
Structural A36 7.85 207 0.29 248 145 445 12
Stainless 304 7.86 193 0.27 207 517 17
Copper Alloy
Bronze C86100 8.83 103 0.34 345 655 17
Titanium
Ti-6Al-4V 4.43 120 0.36 924 1,000 9.4
Ti-6M-4V 4.34 110 0.34 827 495 895 8.3

Table 9.2: Structural Material Properties for Selected Metals (SI Units)

t

y

z
x

y

h

L

Figure 9.8:

(a) x-component of linear momentum:

x → ∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
+ ρgx = 0

∂
(
−y Mz

Izz

)

∂x
= 0

- Stress tensor satisfies the Conservation of Linear Momentum

(b) The strains are given by:

εxx =
σxx

E
, εyy = εzz = − ν

E
σxx, εxy = εxz = εyz = 0

εxx = −y
Mz

IzzE
, εyy =

νyMz

EIzz
, εzz =

νyMz

EIzz
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(c) Integrate the displacement equations and apply boundary conditions:

εxx =
∂ux

∂x
= −y

Mz

EIzz
→ ux = −y

Mz

EIzz
x + C1

εyy =
∂uy

∂y
=

νyMz

EIzz
→ uy =

ν
(

y2

2

)
Mz

EIzz
+ C2

εzz =
∂uz

∂z
=

νyMz

EIzz
→ uz =

νyMz

EIzz
z + C3

ux|x=0 = 0, C1 = 0
uy|y=0 = 0, C2 = 0

uz|z=0 = 0, C3 = 0

ux = −yx
Mz

Izz

uy =
νv

2E
y2 Mz

Izz

uz =
ν

E
yz

Mz

Izz

(d) The displacement in the x-direction is negative (shortening) when y is positive due to the
negative ux term. If y is negative the displacement in the x-direction is positive (expanding).
In the y-direction and z-direction the displacement is expanding when y is greater than zero and
vice versa. Displacement in the y-direction changes with respect to y2, and in the z-direction
it changes with respect to y.
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Deep Thought

Ut tensio sic vis!
Ut tensio sic vis!!
Ut tensio sic vis!!!
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9.3 Questions

9.1 Which conservation laws are especially useful for describing stresses and strains? How are
stress and strain related?

9.2 Write the equations that result from an inversion of the stress-strain relationship.

9.3 Describe in your own words the meanings of the state of plane stress and the state of plane
strain?

9.4 Describe the two types of problems which when solved using the theory of plane elasticity
provide exact solutions.

9.5 Consider small shear strain for a moment. It is often given in terms of an angle. Explain why
this is done.

9.6 What is a constitutive relation? Write down the general constitutive relation in terms of
Cauchy stress and strain.

9.7 For an elastic, isotropic solid material, how many constants are required to define the consti-
tutive relations? Name these and define their meaning.

9.4 Problems

9.8 Structural steel is subjected to the deformation defined by ux(x, y, z ) = 0.002x, uy(x, y, z ) =
0, uz( x, y, z ) = 0 (displacements in inches). Determine the following in US units:

a) Infinitesimal strain tensor.

b) Stress tensor.

c) Draw Mohr’s Circle for the given state of stress.

d) Principal Stresses and Strains.

9.9 Repeat steps a and b in 9.8 for ux(x, y, z ) = 0.002x2 + 0.001x, uy(x, y, z ) = 0.002xy,
uz( x, y, z ) = 0.001z2.

9.10 GIVEN : A Hookean material with E = 10 × 106 psi and ν = 0.5 experiences the following
deformation: ux(x, y, z ) = 0, uy( x, y, z ) = 0.004x, uz( x, y, z ) = 0

REQUIRED :

a) Sketch ux versus x, uy versus y, and uz versus z, and calculate ∂ux

∂x , ∂uy

∂y , ∂uz

∂z .

b) Calculate the infinitesimal strain tensor.

c) Calculate the stress tensor.

9.11 GIVEN : ν = 0.25 and E = 2.0 × 1010 Pa, and strain tensors as follows

(1)




0.002 0.004 0
0.004 0.003 0

0 0 0


 , (2)




0 0.005 0
0.005 0.04 0

0 0 0.006




REQUIRED :

(1) Calculate the stress tensors;

(2) How much is the relative volume change (the dilatation) for this deformation, and compare
the results obtained by using both finite strain formula and the small strain formula.
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9.12 GIVEN : ν = 0.33 and E = 15.0 × 103 MPa, and stress tensors as follows

(1)




10 MPa 4 MPa 0
4 MPa 30 MPa 0

0 0 0


 (2)




20 MPa 50 MPa 0
50 MPa 0 0

0 0 6 MPa




REQUIRED: Calculate the strain tensors.

9.13 GIVEN : ux = z10−4, uz = x10−4, and uy = 0, and material constants E = 2.6 × 1010, and
ν = 0.3.

(1) Compute infinitesimal strain tensor.

(2) Compute the corresponding stress tensor.

(3) What are the principal stresses and principal strains?

(4) Are the principal stresses and strains acting in the same directions?

9.14 A steel plate lies flat in the x-y plane and has dimensions 20 cm × 40 cm. If the plate is
uniformly heated throughout at 1000 ◦C and the thermal expansion coefficient is given by
α = 11 × 10−6 m

(m - ◦C) , calculate the new dimensions of the plate due to thermal expansion.

9.15 A thin rectangular sheet of linearly elastic material has an x-y coordinate system located at
its lower left corner. The body extends 15 in. in the x direction and 8 in. in the y direction.
The material is isotropic with an E = 35, 000, 000 psi and ν = 0.33. A plane stress condition
has been created by forces acting along the edges of the body with a displacement field of:

ux = 1.44 × 10−8x2y

uy = −1.44 × 10−8xy2

Write expressions for the surface force normal to and for the tangential surface force along the
upper 15 in. boundary as functions of x. Write expressions for the surface force normal to
and for the tangential surface force along the right 8 in. boundary as functions of y. Draw the
distribution of normal surface force along these two boundaries on a sketch of the body.

9.16 Use web resources to determine the following material properties. Provide the URL (http
address) that you used.

(a) Yield strength in shear of 2024-T4 and 2014-T6 aluminum.

(b) Poisson’s ratio and yield strength in shear for Ti-5Al-2.5Sn.

(c) All of the table values as presented in Table 9.1 for 4130 heat treated alloy steel.

(d) All of the table values as presented in Table 9.1 for balsa wood.

9.17 GIVEN : The isothermal (no temperature gradient) uniaxial bar specimen of 2024-T4 Alu-
minum (isotropic) shown below:

The axial displacements are measured to be:

ux = −0.02x in
uy = 0.000125x − 0.0005 in x in inches!!

REQUIRED :

1. Sketch the deformed configuration of the test section boundary (using the displacements
given above).

2. Calculate the infinitesimal strain tensor for the test section.
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Problem 9.17

3. Calculate the stress tensor for the test section.

9.18 GIVEN : A linear isotropic ThermoElastic plate of Stainless 304 is subjected to a uniform
temperature change of ∆T and is assumed to be in a state of stress as shown below. At
equilibrium, the ∆T is known.

σ =




−125 −50 0
−50 −100 0
0 0 0


 MPa

REQUIRED :

a) Calculate the infinitesimal strain tensor when ∆T = 0 ◦C. (review equations 9.12 and
9.13 in the notes)

b) Calculate the infinitesimal strain tensors for the two cases:
when ∆T = 100 ◦C, and when ∆T = 25 ◦C.

c) Find the temperature change ∆T necessary to produce zero strain.

9.19 GIVEN : Consider the state of stress called plane stress in which non-zero stresses exist in only
one plane.

REQUIRED :

a) For a state of plane stress in the x-y plane, show that the constitutive equations for
an elastic isotropic material (isothermal case) reduce to the following. Hint: start with
the constitutive equations for the general 3-D elastic, isotropic case and reduce to plane
stress; see equation 10.6): SHOW ALL STEPS.

σxx =
E

(1 − ν2)
[εxx + νεyy]

σyy =
E

(1 − ν2)
[νεxx + εyy]

σxy =
E

(1 + ν)
εxy
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b) Starting with the above relations, show that the strains for plane stress in the x-y plane
become those shown below (see equation 10.7). You must show all steps necessary to
obtain the relations below.

εxx =
1
E

[σxx − νσyy]

εyy =
1
E

[σyy − νσxx]

εxy = (
1 + ν

E
)σxy

εzz = − ν

E
(σxx + σyy)

You may use Scientific Workplace to do the matrix algebra.

9.20 GIVEN : Given that for a general orthotropic elastic material there are 12 unique coeffecients
such that:

[D] =




1
E11

− ν12
E11

− ν13
E11

0 0 0
− ν21

E22

1
E22

− ν23
E22

0 0 0
− ν31

E33
− ν32

E33

1
E33

0 0 0
0 0 0 1

µ23
0 0

0 0 0 0 1
µ31

0
0 0 0 0 0 1

µ12




The constitutive equation for this form would then be:

{ε} = [D] {σ}

where the stress have the following values

{σ} =




σxx = 5 ksi
σyy = 10 ksi
σzz = 20 ksi
σyz = 0 ksi
σzx = 0 ksi

σxy = 7.5 ksi




; {ε} =




εxx

εyy

εzz

εyz

εzx

εxy




REQUIRED :

a) Write the stress tensor in its more common form (i.e., as a tensor or matrix). Does this
constitute generalized plane stress? Why or why not?

Recall that generalized plane stress is a requirement for Mohr’s Circle

b) Suppose that the 12 material coefficients have the following values:

E11 = 106 psi
E22 = 3 × 107 psi
E33 = 0.2 × 106 psi
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ν12 = 0.2
ν13 = 0.25
ν21 = 0.33
ν23 = 0.43
ν31 = 0.05
ν32 = 0.06

µ23 = 104 psi
µ31 = 2 × 104 psi
µ12 = 3 × 104 psi

Calculate the infinitesimal strain tensor.

c) Write the strain tensor in its more common form. Does this constitute generalized plane
strain? Why or why not?
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SOLID MECHANICS SHORT QUESTIONS AND ANSWERS 
UNIT – III  

 
 

1.) Definition of 'plane stress' 

Plane stress exists when one of the three principal stresses is zero. In very flat or 

thin objects, the stresses are negligible in the smallest dimension so plane 

stress can be said to apply. Plane stress is a two-dimensional state of stress in 

which all stress is applied in a single plane 

 

2.) What is plane shear stress? 

Shear stress considering the specific plane is called in plane shear stress and   

other two stresses are out-plane shear stress. This type of stress generally found 

in thin cylindrical closed pressure vessel where max 

 

3.) What is meant by principal stress? 

Principal Stresses. It is defined as the normal stress calculated at an angle   

when shear stress is considered as zero. The normal stress can be obtained for 

maximum and minimum values. 

 

4.) What is the difference between von Mises stress and max principal 

stress? 

Von Mises is a theoretical measure of stress used to estimate yield failure criteria 

in ductile materials and is also popular in fatigue strength calculations (where it is 

signed positive or negative according to the dominant Principal stress), 

whilst Principal stress is a more "real" and directly measurable stress 

 

5.) What is plane strain problem? 

A plane strain problem could be taken as one in which the strain in the z-

direction is the same at all points in the (x, y) plane.  

 

6.) Define Uniquiness. 

In mathematics, a uniqueness theorem is a theorem proving that certain 

conditions determine a unique solution. Picard – Lindel öf theorem, 

the uniqueness of solutions to first-order differential equations. 

Thompson uniqueness theorem in finite group theory. 
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7.)  What is meant by superposition? 

The principle of superposition states that, when two or more waves of the same 

type cross at some point, the resultant displacement at that point is equal to the sum 

of the displacements due to each individual wave. 

 
8.) What is the difference between plane stress and plane strain? 

In mathematical term a state of plane stress in one in which stress along z-
direction is ZERO and a plane strain condition is one in which strain associated 
along z-direction is ZERO. For physical understanding of the situation let us 
consider two plates one thick and the other thin. 

 

9.) Define plane strain. 
      Plane strain A stress condition in linear elastic fracture mechanics in which 
there is zero strain in the direction normal to the axis of applied tensile stress and 
direction of crack growth. It is achieved in thick plate, along a direction parallel to the 
plate. 
 

 
10.) Which type of stress is plane stress? 

Plane Stress: If the stress state at a material particle is such that the only non-
zero stress components act in one plane only, the particle is said to be in plane 
stress. The axes are usually chosen such that the yx - plane is the plane in which 
the stresses ac 

11.)  

What is Mohr's circle of stress? 
Mohr's circle, invented by Christian Otto Mohr, is a two-dimensional graphical 
representation of the transformation law for the Cauchy stress tensor. ... Karl 
Culmann was the first to conceive a graphical representation for stresses while 
considering longitudinal and vertical stresses in horizontal beams during 
bending. 

 
12.) What are the 3 principal stresses? 

The three principal stresses are conventionally labelled σ1, σ2 and σ3. σ1 is the 
maximum (most tensile) principal stress, σ3 is the minimum (most compressive) 
principal stress, and σ2 is the intermediate principal stress.. 
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Module: 7 Torsion of Prismatic Bars       
 
7.2.1    TORSION OF ELLIPTICAL CROSS-SECTION 

Let the warping function is given by 

Axy=y                                                           (7.15) 

where  A is a constant.  This also satisfies the Laplace equation. The boundary  
condition gives 

(Ay - y) 0)( =+-
dS
dx

xAx
dS
dy

 

or     y (A-1) 0)1( =+-
dS
dx

Ax
dS
dy

 

i.e.,  (A+1)2x 02)1( =--
dS
dy

yA
dS
dx

 

or    0])1()1[( 22 =--+ yAxA
dS
d

 

Integrating, we get 

(1+A)x2+(1-A)y2 = constant.  

This is of the form 

12

2

2

2

=+
b
y

a
x

 

These two are identical if 

A
A

b
a

+
-

=
1
1

2

2

 

or  A = 
22

22

ab
ab

+
-

   

Therefore, the function given by 

y  = xy
ab
ab

22

22

+
-

                                                (7.16) 

represents the warping function for an elliptic cylinder with semi-axes a and b under torsion.  
The value of polar moment of inertia J is 

J = ò ò -++ dxdyAyAxyx )( 2222                 (7.17) 
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   = (A+1) ò ò ò ò-+ dxdyyAdxdyx 22 )1(  

J = (A+1)Iy+(1-A)Ix                          (7.18) 

where Ix = 
4

3abp
  and Iy = 

4

3bap
 

Substituting the above values in (7.18), we obtain  

J = 
22

33

ba
ba
+

p
 

But  q = 
GJ

M

GI

M t

P

t =  

Therefore,  Mt = GJq 

                        = Gq 
22

33

ba
ba
+

p
 

or                 q = 
33

22

ba
ba

G

M t

p
+

 

The shearing stresses are given by 

tyz = Gq ÷÷
ø

ö
çç
è

æ
+

¶
¶

x
y
y

 

     = Mt 33

22

ba
ba

p
+

x
ab
ab

÷÷
ø

ö
çç
è

æ
+

+
-

1
22

22

 

or    tyz =
ba

xM t
3

2

p
 

Similarly, txz = 
3

2

ab

yM t

p
 

Therefore, the resultant shearing stress at any point (x, y) is 

t = 22
xzyz tt + = 

33

2

ba

M t

p
 [ ]212424 yaxb +                       (7.19) 

Determination of Maximum Shear Stress 

To determine where the maximum shear stress occurs, substitute for x2 from 

 1
2

2

2

2

=+
b
y

a
x

, 

or    x2 = a2 (1-y2/b2) 
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and    t = [ ] 2

1
222242

33
)(

2
ybaaba

ba

M t -+
p

 

Since all terms under the radical (power 1/2) are positive, the maximum shear stress occurs 

when y is maximum, i.e., when y = b.  Thus, maximum shear stress tmax occurs at the ends of 
the minor axis and its value is 

 tmax = 2/124
33 )(

2
ba

ba
M t

p
 

Therefore, tmax = 2

2
ab
M t

p
                                             (7.20) 

For a = b, this formula coincides with the well-known formula for circular cross-section. 
Knowing the warping function, the displacement w can be easily determined.  

Therefore, w = qy = xy
Gba

abM t
33

22 )(

p
-

                          (7.21) 

The contour lines giving w = constant are the hyperbolas shown in the Figure 7.4 having the 
principal axes of the ellipse as asymptotes.  

 
 

 
 
 
 

Figure 7.4 Cross-section of elliptic bar and contour lines of w 

 

7.2.2    PRANDTL’S MEMBRANE ANALOGY 

It becomes evident that for bars with more complicated cross-sectional shapes, more 
analytical solutions are involved and hence become difficult. In such situations, it is 
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desirable to use other techniques – experimental or otherwise. The membrane analogy 
introduced by Prandtl has proved very valuable in this regard.  

Let a thin homogeneous membrane, like a thin rubber sheet be stretched with uniform 
tension fixed at it’s edge which is a given curve (the cross-section of the shaft) in the 
 xy-plane as shown in the figure 7.5.  

 

Figure 7.5 Stretching of a membrane 

When the membrane is subjected to a uniform lateral pressure p, it undergoes a small 
displacement z where z is a function of x and y.  

Consider the equilibrium of an infinitesimal element ABCD of the membrane after 
deformation.  Let F be the uniform tension per unit length of the membrane. The value of the 
initial tension F is large enough to ignore its change when the membrane is blown up by the 
small pressure p. On the face AD, the force acting is F.dy.  This is inclined at an angle b to 

the x-axis.  Also, tan b is the slope of the face AB and is equal to 
x
z
¶
¶

. Hence the component 

of Fdy in z-direction is ÷
ø
ö

ç
è
æ

¶
¶

-
x
z

Fdy . The force on face BC is also Fdy but is inclined at an 

angle (b + Db) to the x-axis. Its slope is, therefore,  

dx
x
z

xx
z

÷
ø
ö

ç
è
æ
¶
¶

¶
¶

+
¶
¶

  

and the component of the force in the z-direction is 

ú
û

ù
ê
ë

é
÷
ø
ö

ç
è
æ
¶
¶

¶
¶

+
¶
¶

dx
x
z

xx
z

Fdy  
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Similarly, the components of the forces Fdx acting on face AB and CD are 

-Fdx
y
z
¶
¶

 and Fdx ú
û

ù
ê
ë

é
¶
¶

¶
¶

+
¶
¶

dy
y
z

yy
z

)(  

Therefore, the resultant force in z-direction due to tension F  

= ú
û

ù
ê
ë

é
¶
¶

+
¶
¶

+
¶
¶

-ú
û

ù
ê
ë

é
¶
¶

+
¶
¶

+
¶
¶

- dy
y

z
y
z

Fdx
y
z

Fdxdx
x

z
x
z

Fdy
x
z

Fdy
2

2

2

2

 

= F dxdy
y

z

x

z
÷÷
ø

ö
çç
è

æ
¶
¶

+
¶
¶

2

2

2

2

 

But the force p acting upward on the membrane element ABCD is p dxdy, assuming that the 
membrane deflection is small. 

Hence, for equilibrium, 

F ÷÷
ø

ö
çç
è

æ
¶
¶

+
¶
¶

2

2

2

2

y

z

x

z
 = -p 

or        
2

2

2

2

y
z

x
z

¶
¶

+
¶
¶

 = -p/F                                     (7.22) 

Now, if the membrane tension F or the air pressure p is adjusted in such a way that p/F 
becomes numerically equal to 2Gq, then Equation (7.22) of the membrane becomes identical 
to Equation (7.8) of the torsion stress function f.  Further if the membrane height z remains 
zero at the boundary contour of the section, then the height z of the membrane becomes 
numerically equal to the torsion stress function f = 0.  The slopes of the membrane are then 
equal to the shear stresses and these are in a direction perpendicular to that of the slope.  

Further, the twisting moment is numerically equivalent to twice the volume under the 
membrane [Equation (7.14)].  

Table 7.1 Analogy between Torsion and Membrane Problems 

Membrane problem Torsion Problem 
Z f  

S
1

 
G 

P 2q  

y
z

x
z
¶
¶

¶
¶

- ,  zxzy tt ,  

2 (volume 
beneath membrane) 

tM  
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The membrane analogy provides a useful experimental technique.  It also serves  as the basis 
for obtaining approximate analytical solutions for bars of narrow cross-section as well as for 
member of open thin walled section.  
 
 

7.2.3    TORSION OF THIN-WALLED SECTIONS 

Consider a thin-walled tube subjected to torsion. The thickness of the tube may not be 
uniform as shown in the Figure 7.6. 

 

Figure 7.6 Torsion of thin walled sections 

Since the thickness is small and the boundaries are free, the shear stresses will be essentially 
parallel to the boundary.  Let t be the magnitude of shear stress and t is the thickness.  

Now, consider the equilibrium of an element of length D l  as shown in Figure 7.6.  The areas 
of cut faces AB and CD are t1 D l  and t2 D l  respectively. The shear stresses (complementary 
shears) are t1 and t2. 

For equilibrium in z-direction, we have  
 -t1 t1 D l  + t2 t2 D l = 0 
Therefore, t1 t1 = t2 t2 = q = constant  

Hence the quantity t t is constant.  This is called the shear flow q, since the equation is 
similar to the flow of an incompressible liquid in a tube of varying area.  
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Determination of Torque Due to Shear and Rotation   

 

 

Figure 7.7 Cross section of a thin-walled tube and torque due to shear 

Consider the torque of the shear about point O (Figure 7.7). 
The force acting on the elementary length dS of the tube = DF = t t dS = q dS 
The moment arm about O is h and hence the torque = DMt = (qdS) h                          
Therefore, DMt = 2qdA 

where dA is the area of the triangle enclosed at  O by the base dS.  

Hence the total torque is 

Mt = S 2qdA+ 

Therefore, Mt = 2qA                                           (7.23) 

where A is the area enclosed by the centre line of the tube.  Equation (7.23) is generally 

known as the "Bredt-Batho" formula. 

To Determine the Twist of the Tube 

In order to determine the twist of the tube, Castigliano's theorem is used. Referring to Figure 
7.7(b), the shear force on the element is t t dS = qdS. Due to shear strain g, the force does 
work equal to DU 

i.e.,   dt )(
2
1

tdSU =D  

               = ltdS D.)(
2
1 gt  
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                =
G

ltdS
tt .).(

2
1

D  (since gt G= ) 

               = 
Gt

ldSt
2

22 Dt
 

              = 
Gt

ldSq
2

2 D
 

              = 
t

dS
G

lq
.

2

2D
 

       
t

dS

GA

lM
U t .

8 2

2D
=D  

Therefore, the total elastic strain energy is 

U = ò
D

t
dS

GA

lM t
2

2

8
 

Hence, the twist or the rotation per unit length ( lD = 1) is  

q = 
tM

U
¶
¶

= ò t
dS

GA

M t
24

 

or     q = ò t
dS

GA
qA

24
2

 

or     q = ò t
dS

AG
q

2
                                          (7.24)  
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7.2.4    TORSION OF THIN-WALLED MULTIPLE-CELL CLOSED  
           SECTIONS 

 

Figure 7.8 Torsion of thin-walled multiple cell closed section 

Consider the two-cell section shown in the Figure 7.8.  Let A1 and A2 be the areas of the cells 
1 and 2 respectively.  Consider the equilibrium of an element at the junction as shown in the 
Figure 7.8(b). In the direction of the axis of the tube, we can write 

-t1 t1 lD + t2 t2 lD + t3 t3 lD  = 0 
or    t1 t1 =  t2 t2 +  t3 t3   

i.e., q1 = q2 + q3 

This is again equivalent to a fluid flow dividing itself into two streams.  Now, choose 
moment axis, such as point O as shown in the Figure 7.9.  
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Figure. 7.9 Section of a thin walled multiple cell beam and moment axis 

The shear flow in the web is considered to be made of q1 and –q2, since q3 = q1 - q2. 
Moment about O due to q1 flowing in cell 1 (including web) is 

1t
M = 2q1A1 

Similarly, the moment about O due to q2 flowing in cell 2 (including web) is 

Mt 2  = 2q2 (A2+A1) - 2q2A1 

The second term with the negative sign on the right hand side is the moment due to shear 

flow q2 in the middle web.  

Therefore, The total torque is 

 Mt = Mt 1
 + Mt 2  

Mt = 2q1A1 + 2q2A2                                  (a) 

To Find the Twist (q) 

For continuity, the twist of each cell should be the same.  

We have  

q  = ò t
dS

AG
q

2
 

or       2Gq  = ò t
qdS

A
1
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Let a1  = ò t
dS

 for Cell 1 including the web 

      a2  = ò t
dS

 for Cell 2 including the web  

     a12 = ò t
dS

 for the web only 

Then for Cell 1 

           2Gq = )(
1

21211
1

qaqa
A

-           (b) 

For Cell 2 

2Gq = )(
1

11222
2

qaqa
A

-                    (c) 

Equations (a), (b) and (c) are sufficient to solve for q1, q2 and q. 
 

7.2.5   NUMERICAL EXAMPLES 

Example 7.1 
A hollow aluminum tube of rectangular cross-section shown in Figure below, is 
subjected to a torque of 56,500 m-N along its longitudinal axis.  Determine the shearing 
stresses and the angle of twist.  Assume G = 27.6x109 N/m2.  

Figure 7.10 

0.25

0.5

 t1
       t3

      0.006t2=

      0.006t4=
0.012

         All Dimensions in metre 

         Membrane Surface

         A

         B          C
                  p

                  D

         Shear Flowq=

0.01
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Solution: The above figure shows the membrane surface ABCD 

Now, the Applied torque =Mt = 2qA 

                                    56,500 = 2q(0.5x0.25) 

                                    56,500 = 0.25q 

hence,   q = 226000 N/m. 

Now, the shearing stresses are 

t1 = 26

1

/10833.18
012.0

226000
mN

t
q

´==  

t2 = 26

2

/10667.37
006.0

226000
mN

t
q

´==  

t3 = 26 /106.22
01.0

226000
mN´=  

Now, the angle of twist per unit length is 

q = ò t
ds

GA
q

2
 

Therefore, 

 q = úû
ù

êë
é ++

01.0
25.0

)2(
006.0

5.0
012.0
25.0

125.0x10x6.27x2
226000

9
 

or  q = 0.00696014 rad/m 
 
Example 7.2  
The figure below shows a two-cell tubular section as formed by a conventional airfoil 
shape, and having one interior web.  An external torque of 10,000 Nm is acting in a 
clockwise direction.  Determine the internal shear flow distribution.  The cell areas  
are as follows: 

A1 = 680 cm2                  A2 = 2000 cm2  

The peripheral lengths are indicated in Figure  

Solution: 

For Cell 1, a1 = ò (
t

dS
including the web) 

           = 
09.0

33
06.0

67
+   

therefore,   a1 = 148.3 
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For Cell 2,  

a2 = 
08.0

67
09.0

48
09.0

63
09.0

33
+++  

Therefore, a2 = 2409 

For web, 

a12 = 366
09.0

33
=  

Now, for Cell 1,  

2Gq = )(
1

21211
1

qaqa
A

-   

       = )3661483(
680
1

21 qq -  

Therefore, 2Gq = 2.189q1 – 0.54q2                              (i) 

For Cell 2, 

2Gq = )(
1

11222
2

qaqa
A

-   

       = )3662409(
2000

1
12 qq -  

Therefore, 2Gq = 1.20q2 – 0.18q1                            (ii) 

Equating (i) and (ii), we get 

       2.18 q1 – 0.54q2 = 1.20q2 – 0.18q1 

or    2.36q1 – 1.74q2 = 0 

or    q2 = 1.36q1 

The torque due to shear flows should be equal to the applied torque 

Hence, from Equation (a), 
Mt = 2q1 A1 + 2q2 A2 
10,000´ 100 = 2q1 x 680 + 2q2 x 2000 
                    = 1360q1 + 4000q2 

Substituting for q2, we get 
10000´ 100 = 1360q1 + 4000´ 1.36q1 
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Therefore,    
q1 = 147 N and q2 = 200 N 

Figure 7.11 
 

Example 7.3 
A thin walled steel section shown in figure is subjected to a twisting moment T. 
Calculate the shear stresses in the walls and the angle of twist per unit length of the 
box. 

Figure 7.12 

Solution: Let A1 and 2A  be the areas of the cells (1) and (2) respectively. 

2

2

1

a
A

p
=\  

( ) 2
2 422 aaaA =´=  

For Cell (1), 

t
ds

a ò=1  (Including the web) 

÷
ø
ö

ç
è
æ +

=
t

aa
a

2
1

p
 

For Cell (2), 

t
ds

a ò=2  

  q2

   q1   0.09cm

  S=63cm

  0.09cm  S=67cm

  0.08cm

  S=67cm

  S
=

48
cm

  S
=3

3c
m

  Cell-1

  Cell-2

  0.09cm

  0.06cm

2a

2a
 a

A1

 q2

   q1

A2

 t

 t

 t

 t
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t
a

t
a

t
a

t
a 2222

+++=  

÷
ø
ö

ç
è
æ=\

t
a

a
8

2  

For web, 

÷
ø
ö

ç
è
æ=

t
a

a
2

12  

Now,  
For Cell (1), 

( )21211
1

1
2 qaqa

A
G -=q  

         
( )

ú
û

ù
ê
ë

é
÷
ø
ö

ç
è
æ-

+
= 212

222
q

t
a

q
t

aa
a

p
p

 

         ( )[ ]212 22
2

qq
ta
a

-+= p
p

 

( )[ ]21 22
2

2 qq
at

G -+=\ p
p

q                    )1(  

For Cell (2), 

( )11222
2

1
2 qaqa

A
G -=q  

         úû
ù

êë
é -= 122

28
4

1
q

t
a

q
t
a

a
 

         [ ]122
4

4
2

qq
ta

a
-=  

[ ]124
2
1

2 qq
at

G -=\ q                    )2(  

Equating (1) and (2), we get, 

( )[ ] [ ]1221 4
2
1

22
2

qq
at

qq
at

-=-+p
p

 

or ( )[ ] [ ]1221 4
2
1

22
2

qqqq -=-+p
p
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( )[ ] [ ]1221 422
4

qqqq -=-+p
p

 

( )
04

824
1221 =+--

+
\ qqqq

pp
p

 

( )
04

8
1

24
21 =úû

ù
êë
é +-úû

ù
êë
é +

+
qq

pp
p

 

( )
0

4824
21 =úû

ù
êë
é +

-úû
ù

êë
é ++

qq
p
p

p
pp

 

or ( ) ( ) 21 4884 qq ppp +=++  

12 84
85

qq ÷
ø
ö

ç
è
æ

+
+

=\
p
p

 

But the torque due to shear flows should be equal to the applied torque. 
i.e., 2211 22 AqAqT +=                    )3(  

Substituting the values of 12 , Aq and 2A  in (3), we get, 

2
1

2

1 4.
84
85

2
2

2 aq
a

qT ÷
ø
ö

ç
è
æ

+
+

+÷÷
ø

ö
çç
è

æ
=

p
pp

 

   1
2

1
2

84
85

8 qaqa ÷
ø
ö

ç
è
æ

+
+

+=
p
pp  

( )
( ) 1

22

2
1612

q
a

T ú
û

ù
ê
ë

é
+

++
=\

p
pp

 

( )
( )1612

2
221 ++
+

=\
pp

p
a

T
q  

Now, from equation (1), we have, 

( ) ( )
( )

( )
( )úû

ù
ê
ë

é
++

+
÷
ø
ö

ç
è
æ

+
+

-
++

+
+=

1612

2
84
85

2
1612

2
2

2
2

2222 pp
p

p
p

pp
p

p
p

q
a

T

a

T
at

G  

Simplifying, we get the twist as 
( )
( )úû

ù
ê
ë

é
++

+
=

16122

32
23 pp
p

q
tGa

T
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Example 7.4 
A thin walled box section having dimensions taa ´´2  is to be compared with a solid 
circular section of diameter as shown in the figure. Determine the thickness t so that the 
two sections have: 

(a) Same maximum shear stress for the same torque. 
(b) The same stiffness. 

Figure 7.13 
Solution: (a) For the box section, we have 

aatT

At

qAT

´=
=
=

2...2

...2

2

t
t  

ta
T

24
=\t                     )(a  

Now, For solid circular section, we have 

rI
T

p

t
=  

Where Ip = Polar moment of inertia 

÷
ø
ö

ç
è
æ

=

÷÷
ø

ö
çç
è

æ
\

232

4 aa

T t
p

 

aa
T

or
t

p
232

4
=  

÷
ø
ö

ç
è
æ=\ 3

16
a
T

p
t                      )(b  

Equating (a) and (b), we get 

32

16
4 a

T
ta

T
p

=  TatTa 3264 p=\  

64
a

t
p

=\  

(b) The stiffness of the box section is given by 

 a. 
2a 

 t a
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t
ds

GA
q
ò=

2
q  

Here T = 2qA             
A

T
q

2
=\  

úû
ù

êë
é +++=\

t
a

t
a

t
a

t
a

GA
T 22

4 2
q  

      

( ) taG

aT
tGA

aT

22

2

24

6
4
6

=

=
 

Gta
aT

416
6

=\q                      )(c  

The stiffness of the Solid Circular Section is 

44

32

32

aG
T

a
G

T
GI
T

p pp
q =

÷÷
ø

ö
çç
è

æ
==                   )(d  

Equating (c) and (d), we get 

44

32
16

6
aG
T

Gta
aT

p
=  

p
32

16
6

=
t

a
 

3216
6
´

=\
a

t
p

 

÷
ø
ö

ç
è
æ=\

644
3 a

t
p
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Example 7.5 
A two-cell tube as shown in the figure is subjected to a torque of 10kN-m. Determine 
the Shear Stress in each part and angle of twist per metre length. Take modulus of 
rigidity of the material as 83 kN/mm2. 

 
All dimensions in mm 

Figure 7.14 

Solution: For Cell 1 
Area of the Cell = A1= 215000100150 mm=´  

t
ds

a ò=1  (including web) 

      

130
5

100
5.2

150
5

100
5

150

=

+++=
 

For Cell 2 

Area of the cell = ( ) ( )22
2 75125150

2
1

-´´=A  

                                   = 7500mm2 

t
ds

a ò=\ 2 (including web) 

          
5.2

125
5.2

125
5.2

150
++=  

 1602 =\a  

For the web, 

60
5.2

150
12 ==a  

15
0 

100

125

1255

2.5

2.5

2.5q1

 q2

 Mt
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For Cell (1) 

( )21211
1

1
2 qaqa

A
G -=q  

( )21 60130
15000

1
2 qqG -=\ q                  )(a  

For Cell (2) 

( )11222
2

1
2 qaqa

A
G -=q  

( )12 60160
7500

1
qq -=                   )(b  

Equating (a) and (b), we get 

( )1221 60160
7500

1
)60130(

15000
1

qqqq -=-  

Solving, 21 52.1 qq =                     )(c  

Now, the torque due to shear flows should be equal to the applied torque. 

i.e.,  2211 22 AqAqM t +=  

)7500(2)15000(21010 21
6 qq +=´                  )(d  

Substituting (c) in (d), we get 

)7500(2)52.1(1500021010 22
6 qq +´=´  

Nq 02.1652 =\  

Nq 83.25002.16552.11 =´=\  

Shear flow in the web = ( ) ( )02.16583.250213 -=-= qqq  

                                      Nq 81.853 =\  

2

1

1
1 /17.50

5
83.250

mmN
t
q

===\t  

2

2

2
2 /01.66

5.2
02.165

mmN
t
q

===t  

2

3

3
3 /32.34

5.2
81.85

mmN
t
q

===t  

Now, the twist q  is computed by substituting the values of q1 and q2 in equation (a) 
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i.e.,  [ ]02.1656083.250130
15000

1
2 ´´´=qG  

lengthmmradians /10824.1
100083

7.22706
15000

1 5-´=
´

´=\q  

04.1=qor degrees/m length 
 
Example 7.6 
A tubular section having three cells as shown in the figure is subjected to a torque of 
113 kN-m. Determine the shear stresses developed in the walls of the section. 

All dimensions in mm 

Figure 7.15 

Solution: Let 654321 ,,,,, qqqqqq  be the shear flows in the various walls of the tube as 

shown in the figure. 321 ,, AandAA  be the areas of the three cells. 

( ) 22
1 25322127

2
mmA ==\

p
 

2
2 64516254254 mmA =´=  

2
3 64516mmA =  

Now, From the figure, 
q1 = q2 + q4 

q2 = q3 + q5 

q3 = q6  
or 4422111 tttq ttt +==  

66333

5533222

ttq

tttq

tt
ttt

==
+==

                                                              (1) 

Where 654321 ,,,, tttttt and  are the Shear Stresses in the various walls of the tube. 

Now, The applied torque is 

254 254

254

q1

 q6

 q3

 q3

  q4

 q2

 q2

(1) (2) (3)

0.8

0.8

1.3 1.0

127

0.6

q5
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( )333222111

332211

2

222

tAtAtA

qAqAqAM t

ttt ++=
++=

 

i.e., ( ) ( ) ( )[ ]8.0645168.0645168.025322210113 21
6 ´+´+´=´ tt  

( ) 3718397.3 321 =++\ ttt                     (2) 

Now, considering the rotations of the cells and 654321 ,,,, SandSSSSS  as the length of cell 

walls, 

We have, 

3663355

2552244

14411

22

22

2

AGSSS

AGSSS

AGSS

qttt
qttt

qtt

=++-
=++-

=+
                                       (3) 

Here ( ) mmS 3981271 =´= p  

mmSSSSS 25465432 =====  

\(3) can be written as 

qttt
qttt

qt

G

G

GS

645162542542254

645162542542254

25322254398

632

522

41

=+´´+-
=+´´+-

=+
                    (4) 

Now, Solving (1), (2) and (4) we get 

2
1 /4.40 mmN=t  

2
2 /2.55 mmN=t  

2
3 /9.48 mmN=t  

2
4 /7.12 mmN-=t  

2
6 /6.36 mmN=t  

 
 



Prepared by Dr.M.R.RAJAMANICKAM, ASSOCIATE PROFESSOR, MECHANICAL ENGINEERING, ANNAMALAI 
UNIVERSITY

SOLID MECHANICS SHORT QUESTIONS AND ANSWERS
UNIT - IV

1.)
Define thick cylinders.

Thick cylinder is cylinder whose wall thickness is greater than 1/20 times of its 
internal diameter. ... Thin cylinder is cylinder whose wall thickness is lesser than 1/20 
times of its internal diameter.

2.) What is lame's theory?Or Lame's theory
• Assumptions: • The material is homogeneous and isotropic. • Plane sections of the 
cylinder perpendicular to the longitudinal axis. remain plane under pressure. That is 
longitudinal strain is the same at all points in the cylinder.

3.) Which ratio decides whether cylinder is thin or thick?
Let t denotes thickness and d denotes diameter of the cylinder. If ratio of t/d is less 
than 1/20 than the cylinder is thin cylinder. And if ratio of t/d is greater than 1/20 
than cylinder is thick cylinder

4.) What are thick cylinders?
Thick cylinder is cylinder whose wall thickness is greater than 1/20 times of its 
internal diameter. ... Thin cylinder is cylinder whose wall thickness is lesser than 1/20 
times of its internal diameter.

5.) What is hoop stress definition?
Hoop stress is the circumferential force per unit areas (Psi) in the pipe wall due to 
internal pressure. It can be explained as the largest tensile stress in a supported pipe 
carrying a fluid under pressure.

6.) What is the difference between thick and thin?
Density is the main difference between thick and thin hair. Thick hair has a higher 
density, thin hair's density is lower. ... Those with more than 2,200 strands 
have thicker hair, those with less have thinner hair.

7.) What is radial stress in thick cylinder?
The radial stress for a thick-walled cylinder is equal and opposite to the gauge 
pressure on the inside surface, and zero on the outside surface. The 
circumferential stress and longitudinal stresses are usually much larger for pressure 
vessels, and so for thin-walled instances, radial stress is usually neglected.

8.) What is the difference between hoop stress and longitudinal stress?
Longitudinal stress is the stress in a pipe wall, acting along the longitudinal axis of 
the pipe.It is produced by the pressure of the fluid in the pipe. It is also called as Hoop 
stress. Radial stress is stress towards or away from the central axis of a component
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9.) What is meant by tangential stress?
Definition of tangential stress. : a force acting in a generally horizontal direction 
especially : a force that produces mountain folding and over thrusting.

10.) What is longitudinal stress in cylinder?
Longitudinal Stress Thin Walled Pressure Vessel: When the vessel has closed ends 
the internal pressure acts on them to develop a force along the axis of the cylinder. 
This is known as the axial or longitudinal stress and is usually less than the 
hoop stress.

11. What is the normal stress?
A normal stress is a stress that occurs when a member is loaded by an axial force. 
The value of the normal force for any prismatic section is simply the force divided by 
the cross sectional area. A normal stress will occur when a member is placed in 
tension or compression.

12.) What is longitudinal tension?
elevation and lowering of the larynx.
The active longitudinal tension of the vocal folds is achieved through the contraction 
of the vocalis muscle, whereas the passive longitudinal tension is achieved through 
contraction of the cricothyroid muscle.

What is a tangential relationship?
tangential. Tangential describes something that's not part of the whole. If you make a 
comment that is tangential to the story you're telling, it's a digression. The story could 
still be understood without it. In geometry, a tangent is a line that touches a curve in one
spot but doesn't intersect it anywhere else.

13.) What is meant by tangential force?
Tangential force. (Mech.) a force which acts on a moving body in the direction of 
a tangent to the path of the body, its effect being to increase or diminish the velocity; - 
distinguished from a normal force, which acts at right angles to the tangent and 
changes the direction of the motion without changing the velocity ..

14.) What is meant by radial stress?
Radial stress is stress towards or away from the central axis of a component. The 
walls of pressure vessels generally undergo tri-axial loading. For cylindrical pressure 
vessels, the normal loads on a wall element are the longitudinal stress, the 
circumferential (hoop) stress and the radial stress.
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15.) What is meant by circumferential stress?
The stresses induced in the cylinder due to the circumferential failure is 
called circumferential stress/ hoop stress. Hoop's stress in thin cylinders. In thin 
cylinders, the pressure due to the fluid inside causes a bursting force on to the cylinder 
walls due to which the stress are induced in the cylinder.

16.) What is torsional testing?
The purpose of a torsion test is to determine the behavior a material or test sample 
exhibits when twisted or under torsional forces as a result of applied moments that 
cause shear stress about the axis.

17.) What are the advantages of hollow shaft over solid shaft?
Hollow shafts are much lighter than solid shafts and can transmit same torque 
like solid shafts of the same dimensions. More over less energy is necessary to 
acceleration and deceleration of hollow shafts. Therefore hollow shafts have great 
potential for use in power transmission in automotive industry

18.) What is shear and torsion?
In shear force forces are parallel and in opposite direction and causes shear force 
before brakedown. Eg … stress in material while performing shear stress test on UTM. 
In case of torsion force acting in tangential direction and causes twisting moment.

19.) What is torsional shear stress?
Torsional shear stress or Torsional stress is the shear stress produced in the shaft 
due to the twisting. This twisting in the shaft is caused by the couple acting on it.

20.) What is the theory of torsion?
In solid mechanics, torsion is the twisting of an object due to an applied torque, 
therefore is expressed in N. ... The theory of Torsion is based on the following 
Assumptions : The material in the shaft is uniform throughout. The twist along the shaft 
is uniform. The shaft is of uniform circular cross section throughout.

21.) What is difference between torque and torsion?
Torque and torsion are both related to turning effects experienced by a body. The 
main difference between torque and torsion is that torque describes something that 
is capable of producing an angular acceleration, whereas torsion describes the twist 
formed in a body due to a torque.
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SOLID MECHANICS SHORT QUESTIONS AND ANSWERS 
UNIT - IV 

1.)  
Define thick cylinders. 

Thick cylinder is cylinder whose wall thickness is greater than 1/20 times of its 
internal diameter. ... Thin cylinder is cylinder whose wall thickness is lesser than 1/20 
times of its internal diameter. 

 

2.) What is lame's theory?Or Lame's theory 
• Assumptions: • The material is homogeneous and isotropic. • Plane sections of the 
cylinder perpendicular to the longitudinal axis. remain plane under pressure. That is 
longitudinal strain is the same at all points in the cylinder. 
 
 

3.) Which ratio decides whether cylinder is thin or thick? 
Let t denotes thickness and d denotes diameter of the cylinder. If ratio of t/d is less 
than 1/20 than the cylinder is thin cylinder. And if ratio of t/d is greater than 1/20 
than cylinder is thick cylinder 

 

4.) What are thick cylinders? 
Thick cylinder is cylinder whose wall thickness is greater than 1/20 times of its 
internal diameter. ... Thin cylinder is cylinder whose wall thickness is lesser than 1/20 
times of its internal diameter. 
 

5.) What is hoop stress definition? 
Hoop stress is the circumferential force per unit areas (Psi) in the pipe wall due to 
internal pressure. It can be explained as the largest tensile stress in a supported pipe 
carrying a fluid under pressure. 
 

6.) What is the difference between thick and thin? 
Density is the main difference between thick and thin hair. Thick hair has a higher 
density, thin hair's density is lower. ... Those with more than 2,200 strands 
have thicker hair, those with less have thinner hair. 
 

7.) What is radial stress in thick cylinder? 
The radial stress for a thick-walled cylinder is equal and opposite to the gauge 
pressure on the inside surface, and zero on the outside surface. The 
circumferential stress and longitudinal stresses are usually much larger for pressure 
vessels, and so for thin-walled instances, radial stress is usually neglected. 
 

8.) What is the difference between hoop stress and longitudinal stress? 
Longitudinal stress is the stress in a pipe wall, acting along the longitudinal axis of 
the pipe.It is produced by the pressure of the fluid in the pipe. It is also called as Hoop 
stress. Radial stress is stress towards or away from the central axis of a component 
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9.) What is meant by tangential stress? 
Definition of tangential stress. : a force acting in a generally horizontal direction 
especially : a force that produces mountain folding and over thrusting. 
 

10.) What is longitudinal stress in cylinder? 
Longitudinal Stress Thin Walled Pressure Vessel: When the vessel has closed ends 
the internal pressure acts on them to develop a force along the axis of the cylinder. 
This is known as the axial or longitudinal stress and is usually less than the 
hoop stress. 
 
 

11. What is the normal stress? 
A normal stress is a stress that occurs when a member is loaded by an axial force. 
The value of the normal force for any prismatic section is simply the force divided by 
the cross sectional area. A normal stress will occur when a member is placed in 
tension or compression. 
 

12.) What is longitudinal tension? 
elevation and lowering of the larynx. 
The active longitudinal tension of the vocal folds is achieved through the contraction 
of the vocalis muscle, whereas the passive longitudinal tension is achieved through 
contraction of the cricothyroid muscle. 
 
 

What is a tangential relationship? 
tangential. Tangential describes something that's not part of the whole. If you make a 
comment that is tangential to the story you're telling, it's a digression. The story could 
still be understood without it. In geometry, a tangent is a line that touches a curve in one 
spot but doesn't intersect it anywhere else. 
 
 

13.) What is meant by tangential force? 
Tangential force. (Mech.) a force which acts on a moving body in the direction of 
a tangent to the path of the body, its effect being to increase or diminish the velocity; - 
distinguished from a normal force, which acts at right angles to the tangent and 
changes the direction of the motion without changing the velocity .. 
 
 

14.) What is meant by radial stress? 
Radial stress is stress towards or away from the central axis of a component. The 
walls of pressure vessels generally undergo tri-axial loading. For cylindrical pressure 
vessels, the normal loads on a wall element are the longitudinal stress, the 
circumferential (hoop) stress and the radial stress. 
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15.) What is meant by circumferential stress? 

The stresses induced in the cylinder due to the circumferential failure is 
called circumferential stress/ hoop stress. Hoop's stress in thin cylinders. In thin 
cylinders, the pressure due to the fluid inside causes a bursting force on to the cylinder 
walls due to which the stress are induced in the cylinder. 
 

16.) What is torsional testing? 
The purpose of a torsion test is to determine the behavior a material or test sample 
exhibits when twisted or under torsional forces as a result of applied moments that 
cause shear stress about the axis. 
 
 

17.) What are the advantages of hollow shaft over solid shaft? 
Hollow shafts are much lighter than solid shafts and can transmit same torque 
like solid shafts of the same dimensions. More over less energy is necessary to 
acceleration and deceleration of hollow shafts. Therefore hollow shafts have great 
potential for use in power transmission in automotive industry 
 
 

18.) What is shear and torsion? 
In shear force forces are parallel and in opposite direction and causes shear force 
before brakedown. Eg … stress in material while performing shear stress test on UTM. 
In case of torsion force acting in tangential direction and causes twisting moment. 
 
 

19.) What is torsional shear stress? 
Torsional shear stress or Torsional stress is the shear stress produced in the shaft 
due to the twisting. This twisting in the shaft is caused by the couple acting on it. 
 

20.) What is the theory of torsion? 
In solid mechanics, torsion is the twisting of an object due to an applied torque, 
therefore is expressed in N. ... The theory of Torsion is based on the following 
Assumptions : The material in the shaft is uniform throughout. The twist along the shaft 
is uniform. The shaft is of uniform circular cross section throughout. 
 
 
 

21.) What is difference between torque and torsion? 
Torque and torsion are both related to turning effects experienced by a body. The 
main difference between torque and torsion is that torque describes something that 
is capable of producing an angular acceleration, whereas torsion describes the twist 
formed in a body due to a torque. 
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SOLID MECHANICS SHORT QUESTIONS AND ANSWERS
UNIT-V

1.) What is the energy method ?
Rayleigh's method is based on the principle of conservation of energy. ... The kinetic energy is
stored in the mass and is proportional to the square of the velocity. The 
potential energy includes strain energy that is proportional to elastic deformations and the work
done by the applied forces.

2.) What is the difference between elasticity and plasticity?
Elasticity is defined as the property which enables a material to get back to (or recover) its 
original shape, after the removal of applied force. For example Plasticity is defined as the 
property which enables a material to be deformed continuously and permanently without rupture
during the application of force.

3.) What does stress concentration mean?
A stress concentration (often called stress raisers or stress risers) is a location in an object 
where stress is concentrated. ... A material can fail, via a propagating crack, when a 
concentrated stress exceeds the material's theoretical cohesive strength.

4.) Define potential energy methods
Potential energy is that energy which an object has because of its position. It is 
called potential energy because it has the potential to be converted into other forms 
of energy, such as kinetic energy.

5.) Define von Mises yield criterion.
The von Mises yield criterion (also known as the maximum distortion energy 
criterion) suggests that yielding of a ductile material begins when the second 
deviatoric stress invariant reaches a critical value. It is part of plasticity theory that 
applies best to ductile materials, such as some metals.

6.)  What is the difference between von Mises and Tresca?
Mises is smooth, while Tresca has corners. At the crystal level (single grain) yielding 
does associate with dislocation movement on slip planes. This is caused by shear 
stress on the slip system (resolved shear stress).

7.) Why von Mises stress is used?
Von Mises stress is a value used to determine if a given material will yield or fracture. 
It is mostly used for ductile materials, such as metals.

8.) Is von Mises or Tresca more conservative?
The Tresca theory is more conservative than the von Mises theory. It predicts a 
narrower elastic region. The Tresca criterion can be safer from the design point of view, 
but it could lead the engineer to take unnecessary measures to prevent an unlikely 
failure. ... Von Mises versus Tresca criteria in a 2D system.
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9.) What is the difference between von Mises stress and principal stress?
Von Mises is a theoretical measure of stress used to estimate yield failure criteria in 
ductile materials and is also popular in fatigue strength calculations (where it is signed 
positive or negative according to the dominant Principal stress), whilst Principal 
stress is a more "real" and directly measurable stress

10.) Define theory of strength.
Definition. In mechanics of materials, the strength of a material is its ability to 
withstand an applied load without failure or plastic deformation. The field 
of strength of materials deals with forces and deformations that result from their 
acting on a material.

11.) What is Mohr's strength theory of soil?
The Mohr theory is virtually an empirical theory of yield which accounts for the 
behavior of permanently deformed materials. As portrayed on a Mohr stress diagram 
the theory assumes a functional relation between mean stress and maximum shear 
stress on the plane of failure.

12.) What are the different theories of failure?
There are five theories of failure: Shear strain energy theory. Total strain 
energy theory. Maximum shear stress theory

13.) What is Rankine theory of failure?

Rankine theory. Rankine's Theory assumes that failure will occur when the 
maximum principal stress at any point reaches a value equal to the tensile stress 
in a simple tension specimen at failure. ... Rankine's theory is satisfactory for 
brittle materials, and not applicable to ductile materials.

14.) What is the maximum shear stress theory?
The Maximum Shear Stress theory states that failure occurs when the maximum 
shear stress from a combination of principal stresses equals or exceeds the value 
obtained for the shear stress at yielding in the uniaxial tensile test.

15.) What is principal stress theory?
Maximum principle stress theory or normal stress theory says that, yielding occurs at
a point in a body, when principle stress (maximum normal stress) in a biaxial system 
reaches limiting yield value of that material under simple tension test. ... That's why 
this theory preferred for brittle materials.

16.) What is distortion energy theory?
The distortion energy theory is a failure theory that is used to predict the failure of a 
tough material. It is based on the assumption that the proportion of energy that causes 
a component to change shape is a crucial factor in relation to the Material stress. An 
equivalent stress










































